646 resultados para Blended Coals


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the experimental results on the slagging propensity of three pairs of blended coals tested in the Australian Coal Industry Research Laboratory furnace. The results showed that none of the coals or blends produced strongly molten deposit. At worst, the deposits contained some moderately sintered material. Most of the blends have (slightly) worse slagging behavior than the component coals. In order to rank the slagging propensity numerically, we defined the minimum heat flux ratio and total heat flux ratio based on the heat flux profiles. They are better in ranking the slagging propensities than other measures such as the build-up rate and visual physical characteristics. The Fe2O3/CaO molar ratio correlates the slagging propensity for five coals and six blends of this study. The worst slagging occurs when the ratio approaches 1.0. This ratio provides explanation of why the blends had worse slagging than the component coals for the pairs of blends: A-B and C-D. However, we note that there are causes of slagging other than the Fe2O3/CaO molar ratio. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The blending of coals has become popular to improve the performance of coals, to meet specifications of power plants and, to reduce the cost of coals, This article reviews the results and provides new information on ignition, flame stability, and carbon burnout studies of blended coals. The reviewed studies were conducted in laboratory-, pilot-, and full-scale facilities. The new information was taken in pilot-scale studies. The results generally show that blending a high-volatile coal with a low-volatile coal or anthracite can improve the ignition, flame stability and burnout of the blends. This paper discusses two general methods to predict the performance of blended coals: (1) experiment; and (2) indices. Laboratory- and pilot-scale tests, at least, provide a relative ranking of the combustion performance of coal/blends in power station boilers. Several indices, volatile matter content, heating value and a maceral index, can be used to predict the relative ranking of ignitability and flame stability of coals and blends. The maceral index, fuel ratio, and vitrinite reflectance can also be used to predict the absolute carbon burnout of coal and blends within limits. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxy-coal combustion is a viable technology, for new and existing coal-fired power plants, as it facilitates carbon capture and, thereby, can mitigate climate change. Pulverized coals of various ranks, biomass, and their blends were burned to assess the evolution of combustion effluent gases, such as NO(x), SO(2), and CO, under a variety of background gas compositions. The fuels were burned in an electrically heated laboratory drop-tube furnace in O(2)/N(2) and O(2)/CO(2) environments with oxygen mole fractions of 20%, 40%, 60%, 80%, and 100%, at a furnace temperature of 1400 K. The fuel mass flow rate was kept constant in most cases, and combustion was fuel-lean. Results showed that in the case of four coals studied, NO(x) emissions in O(2)/CO(2) environments were lower than those in O(2)/N(2) environments by amounts that ranged from 19 to 43% at the same oxygen concentration. In the case of bagasse and coal/bagasse blends, the corresponding NO(x) reductions ranged from 22 to 39%. NO(x) emissions were found to increase with increasing oxygen mole fraction until similar to 50% O(2) was reached; thereafter, they monotonically decreased with increasing oxygen concentration. NO(x) emissions from the various fuels burned did not clearly reflect their nitrogen content (0.2-1.4%), except when large content differences were present. SO(2) emissions from all fuels remained largely unaffected by the replacement of the N(2) diluent gas with CO(2), whereas they typically increased with increasing sulfur content of the fuels (0.07-1.4%) and decreased with increasing calcium content of the fuels (0.28-2.7%). Under the conditions of this work, 20-50% of the fuel-nitrogen was converted to NO(x). The amount of fuel-sulfur converted to SO(2) varied widely, depending on the fuel and, in the case of the bituminous coal, also depending on the O(2) mole fraction. Blending the sub-bituminous coal with bagasse reduced its SO(2) yields, whereas blending the bituminous coal with bagasse reduced both its SO(2) and NO(x) yields. CO emissions were generally very low in all cases. The emission trends were interpreted on the basis of separate combustion observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermogravimetrically-determined carbon dioxide reactivities of chars formed from New Zealand coals, ranging in rank from lignite to high volatile bituminous, vary from 0.12 to 10.63 mg/h/mg on a dry, ash-free basis. The lowest rank subbituminous coal chars have similar reactivities to the lignite coal chars. Calcium content of the char shows the strongest correlation with reactivity, which increases as the calcium content increases. High calcium per se does not directly imply a high char reactivity. Organically-bound calcium catalyses the conversion of carbon to carbon monoxide in the presence of carbon dioxide, whereas calcium present as discrete minerals in the coal matrix, e.g., calcite, fails to significantly affect reactivity. Catalytic effects of magnesium, iron, sodium and phosphorous are not as obvious, but can be recognised for individual chars. The thermogravimetric technique provides a fast, reliable analysis that is able to distinguish char reactivity differences between coals, which may be due to any of the above effects. Published by Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Open system pyrolysis (heating rate 10 degrees C/min) of coal maturity (vitrinite reflectance, VR) sequence (0.5%, 0.8% and 1.4% VR) demonstrates that there are two stages of thermogenic methane generation from Bowen Basin coals. The first and major stage shows a steady increase in methane generation maximising at 570 degrees C, corresponding to a VR of 2-2.5%. This is followed by a less intense methane generation which has not as yet maximised by 800 degrees C (equivalent to VR of 5%). Heavier (C2+) hydrocarbons are generated up to 570 degrees C after which only the C-1 (CH4, CO and CO2) gases are produced. The main phase of heavy hydrocarbon generation occurs between 420 and 510 degrees C. Over this temperature range,methane generation accounts for only a minor component, whereas the wet gases (C-2-C-5) are either in equal abundance or are more abundant by a factor of two than the liquid hydrocarbons. The yields of non-hydrocarbon gases CO2 and CO are greater then methane during the early stages of gas generation from an immature coal, subordinate to methane during the main phase of methane generation after which they are again dominant. Compositional data for desorbed and produced coal seam gases from the Bowen show that CO2 and wet gases are a minor component. This discrepancy between the proportion of wet gas components produced during open system pyrolysis and that observed in naturally matured coals may be the result of preferential migration of wet gas components, by dilution of methane generated during secondary cracking of bitumen, or kinetic effects associated with different activations for production of individual hydrocarbon gases. Extrapolation of results of artificial pyrolysis of the main organic components in coal to geological significant heating rates suggests that isotopically light methane to delta(13)C of -50 parts per thousand can be generated. Carbon isotope depletions in C-13 are further enhanced, however, as a result of trapping of gases over selected rank levels (instantaneous generation) which is a probable explanation for the range of delta(13)C values we have recorded in methane desorbed from Bowen Basin coals (-51 +/- 9 parts per thousand). Pervasive carbonate-rich veins in Bowen Basin coals are the product of magmatism-related hydrothermal activity. Furthermore, the pyrolysis results suggest an additional organic carbon source front CO2 released at any stage during the maturation history could mix in varying proportions with CO2 from the other sources. This interpretation is supported by C and O isotopic ratios, of carbonates that indicate mixing between magmatic and meteoric fluids. Also, the steep slope of the C and O isotope correlation trend suggests that the carbonates were deposited over a very narrow temperature interval basin-wide, or at relatively high temperatures (i.e., greater than 150 degrees C) where mineral-fluid oxygen isotope fractionations are small. These temperatures are high enough for catagenic production of methane and higher hydrocarbons from the coal and coal-derived bitumen. The results suggests that a combination of thermogenic generation of methane and thermodynamic processes associated with CH4/CO2 equilibria are the two most important factors that control the primary isotope and molecular composition of coal seam gases in the Bowen Basin. Biological process are regionally subordinate but may be locally significant. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tightly constrained thermogravimetric experimental procedures (particle size < 212 mu m, sample mass 15.5 mg, CO2 reactant gas, near isothermal conditions) allow the reactivity of chars from high volatile New Zealand coals to be determined to a repeatability of +/-0.07 h(-1) at 900 degrees C and +/-0.5 h(-1) at 1100 degrees C. The procedure also provides proximate analyses information and affords a quick (< 90 min) comparison between different coal types as well as indicating likely operating conditions and problems associated with a particular coal or blend. A clear difference is evident between reactivities of differing New Zealand coal ranks. Between 900 and 1100 degrees C, bituminous coals increase thirtyfold in reactivity compared with fourfold for subbituminous, with the latter being three to five times greater in reactivity at higher temperature. (C) 1997 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulverised New Zealand coal samples have been tested from an initial temperature of 40 degreesC and reacted adiabatisally in an oven with oxygen to provide a full temperature history of auto-oxidation up to the self-sustained process of combustion. This procedure produces a self-heating rate index, R-70, calculated as the ratio of the time taken to reach 70 degreesC (degreesC/h). The R-70 index is a measure of the coal's propensity to spontaneous combustion. R-70 values for New Zealand coals are much higher than any previously published results. They show a rank dependence, whereby subbituminous coals have the highest propensity to spontaneous combustion (14.91-17.23 degreesC/h). A lignite sample has an R-70 value of 7.76 degreesC/h, and high-volatile bituminous B coals have R-70 values of 0.31-2.23 degreesC/h. Samples stored for 2 years show the same rank trend. The nature of this trend is most likely a function of the internal surface area of the coal that governs the available sites for oxidation. Calculating the Suggate rank; for any New Zealand coal can be used to rare its propensity to spontaneous combustion. Resin bodies in the subbituminous coal show no propensity to spontaneous combustion. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adiabatic self-heating tests were carried out on five New Zealand coal samples ranging in rank from lignite to high-volatile bituminous. Kinetic parameters of oxidation were obtained front the self-heating curves assuming Arrhenius behaviour. The activation energy E (kJ mol(-1)) and the pre-exponential factor A (s(-1)) were determined in the temperature range of 70-140 degreesC. The activation energy exhibited a definite rank relationship with a minimum E of 55 kJ mol(-1) occurring at a Suggate rank of similar to6.2 corresponding to subbituminous C. Either side of this rank there was a noticeable increase in the activation energy indicating lower reactivity of the coal. A similar rank trend was also observed in the R-70 self-heating rate index values that were taken from the initial portion of the self-heating curve front 40 to 70 degreesC. From these results it is clear that the adiabatic method is capable of providing reliable kinetic parameters of coal oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marble processing activities generates a.significant amount of waste in dust form. This waste, which is nowadays one of the environmental problems worldwide, presents great potential of being used as mineral addition in blended cements production. This paper shows preliminary results of an ongoing project which ultimate goal is to investigate the viability of using waste marble dust (WMD), produced by marble Portuguese industry, as cement replacement material. In order to evaluate the effects of the WMD on mechanical behaviour, different mortar blended cement mixtures were tested. These mixtures were prepared with different partial substitution level of cement with WMD. Strength results of WMD blended cements were compared to control cements with same level of incorporation of natural limestone used to produce commercial Portland-limestone cements. The results obtained show that WMD blended cements perform better than limestone blended cements for same replacement level up to 20% w/w. Therefore, WMD reveals promising attributes for blended cements production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter aims to demonstrate how PAOL - Unit for Innovation in Education, a project from ISCAP - School of Accounting and Administration of Oporto ....

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To show with the case of Applied Optics (AO), the adequacy of blended learning to the teaching/learning process in experimental Science and technology (S&T).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Mestrado Integrado em Engenharia Química e Bioquímica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A presente comunicação visa discutir as mais-valias de um desenho metodológico sustentado numa abordagem conceptual da Terminologia aplicado ao exercício de harmonização da definição do cenário educativo mais promissor do Ensino Superior actual: o blended learning. Sendo a Terminologia uma disciplina que se ocupa da representação, da descrição e da definição do conhecimento especializado através da língua a essência deste domínio do saber responde a uma necessidade fundamental da sociedade actual: putting order into our universe, nas palavras de Nuopponen (2011). No contexto descrito, os conceitos, enquanto elementos da estrutura do conhecimento (Sager, 1990) constituem um objecto de investigação de complexidade não despicienda, pois apesar do postulado de que a língua constitui uma ferramenta fundamental para descrever e organizar o conhecimento, o princípio isomórfico não pode ser tomado como adquirido. A abordagem conceptual em Terminologia propõe uma visão precisa do papel da língua no trabalho terminológico, sendo premissa basilar que não existe uma correspondência unívoca entre os elementos atomísticos do conhecimento e os elementos da expressão linguística. É pela razões enunciadas que as opções metodológicas circunscritas à análise do texto de especialidade serão consideradas imprecisas. Nesta reflexão perspectiva-se que o conceito-chave de uma abordagem conceptual do trabalho terminológico implica a combinação de um processo de elicitação do conhecimento tácito através de uma negociação discursiva orientada para o conceito e a análise de corpora textuais. Defende-se consequentemente que as estratégias de interacção entre terminólogo e especialista de domínio merecem atenção detalhada pelo facto de se reflectirem com expressividade na qualidade dos resultados obtidos. Na sequência do exposto, o modelo metodológico que propomos sustenta-se em três etapas que privilegiam um refinamento dessa interacção permitindo ao terminólogo afirmar-se como sujeito conceptualizador, decisor e interventor: (1) etapa exploratória do domínio-objecto de estudo; (2) etapa de análise onamasiológica de evidência textual e discursiva; (3) etapa de modelização e de validação de resultados. Defender-se-á a produtividade de uma sequência cíclica entre a análise textual e discursiva para fins onomasiológicos, a interacção colaborativa e a introspecção.