63 resultados para Blenda


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the options for plastics modification more convenient, both from a technical-scientific and economic, is the development of polymer blends by processing in the molten state. This work was divide into two stages, with the aim to study the phase morphology of binary blend PMMA / PET blend and this compatibilized by the addition of the poly(methyl methacrylate-co-glycidyl methacrylate-co-ethyl acrylate) copolymer (MMA-GMA-EA). In the first stage is analyzed the morphology of the blend at a preliminary stage where we used the bottle-grade PET in a Haake torque rheometer and the effect of compatibilizer in this blend was evaluated. In the second stage the blend was processed using the recycled PET in a single screw extruder and subsequently injection molding in the shape of specimens for mechanical tests. In both stages we used a transmission electron microscopy (TEM) to observe the morphologies of the samples and an image analyzer to characterize them. In the second stage, as well as analysis by TEM, tensile test, scanning electron microscopy (SEM) and atomic force microscopy (AFM) was performed to correlate the morphology with the mechanical properties. The samples used in morphological analyzes were sliced by cryo-ultramicrotomy technique for the analysis by TEM and the analysis by SEM and AFM, we used the flat face of the block after cut cryogenic. It was found that the size of the dispersed phase decreased with the addition of MMA-GMA-EA in blends prepared in a Haake. In the tensile test, the values of maximum tensile strength and modulus of elasticity is maintained in a range between the value of pure PMMA the pure PET, while the elongation at break was influenced by the composition by weight of the PMMA mixture. The coupling agent corroborated the results presented in the blend PMMA / PETrec / MMA-GMA-EA (80/15/5 %w/w), obtained by TEM, AFM and SEM. It was concluded that the techniques used had a good morphologic correlation, and can be confirmed for final analysis of the morphological characteristics of the blends PMMA / PET

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies indicate that a variation in the degree of crystallinity of the components of a polymer blend influences the mechanical properties. This variation can be obtained by subjecting the blend to heat treatments that lead to changes in the spherulitic structure. The aim of this work is to analyze the influence of different heat treatments on the variation of the degree of crystallinity and to establish a relationship between this variation and the mechanical behavior of poly(methyl methacrylate)/poly(ethylene terephthalate) recycled (PMMA / PETrec) with and without the use of compatibilizer agent poly(methyl methacrylate-al-glycidyl methacrylate-al-ethyl acrylate) (MMAGMA- EA). All compositions were subjected to two heat treatments. T1 heat treatment the samples were treated at 130 ° C for 30 minutes and cooled in air. In T2, the samples were treated at 230 ° C for 5 minutes and cooled to approximately -10 ° C. The variation of the degree of crystallinity was determined by the proportional relationship between crystallinity and density, with the density measured by pycnometry. The mechanical behavior was verified by tensile tests with and without the presence of notches and pre-cracks, and by method of fracture toughness in plane strain (KIC). We used the scanning electron microscopy (SEM) to analyze the fracture surface of the samples. The compositions subjected to heat treatment T1, in general, showed an increase in the degree of crystallinity in tensile strength and a tendency to decrease in toughness, while compositions undergoing treatment T2 showed that the opposite behavior. Therefore, this work showed that heat treatment can give a polymer blend further diversity of its properties, this being caused by changes in the crystal structure

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work studied the immiscible blend of elastomeric poly(methyl methacrylate) (PMMA) with poly(ethylene terephthalate) (PET) bottle grade with and without the use of compatibilizer agent, poly(methyl methacrylate-co-glycidyl methacrylate - co-ethyl acrylate) (MGE). The characterizations of torque rheometry, melt flow index measurement (MFI), measuring the density and the degree of cristallinity by pycnometry, tensile testing, method of work essential fracture (EWF), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were performed in pure polymer and blends PMMA/PET. The rheological results showed evidence of signs of chemical reaction between the epoxy group MGE with the end groups of the PET chains and also to the elastomeric phase of PMMA. The increase in the concentration of PET reduced torque and adding MGE increased the torque of the blend of PMMA/PET. The results of the MFI also show that elastomeric PMMA showed lower flow and thus higher viscosity than PET. In the results of picnometry observed that increasing the percentage of PET resulted in an increase in density and degree crystallinity of the blends PMMA/PET. The tensile test showed that increasing the percentage of PET resulted in an increase in ultimate strength and elastic modulus and decrease in elongation at break. However, in the phase inversion, where the blend showed evidence of a co-continuous morphology and also, with 30% PET dispersed phase and compatibilized with 5% MGE, there were significant results elongation at break compared to elastomeric PMMA. The applicability of the method of essential work of fracture was shown to be possible for most formulations. And it was observed that with increasing elastomeric PMMA in the formulations of the blends there was an improvement in specific amounts of essential work of fracture (We) and a decrease in the values of specific non-essential work of fracture (βWp)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work intends to investigate the biodegradation of the polymers and blend films of polypropylene (PP) and poly(hidroxybutirate-valerate) (PHBV), after UV radiation to facilitate the PP degradation, which is a polymer with long chains difficult to degrade by biological agents present in the environment. This polymer is outstanding by its mechanical properties and versatility of industrial and commercial use and the PHBV by its quick biodegradability in the environment. Blends of these materials could to present a commitment between mechanical properties and biodegradability to execute its function and after the discard to have lesser lifetime in the garbage landfills. Another aspect of this work is the controlling effect of PP on PHBV, influencing its degradation time

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the great development of organic and polymeric electroluminescent materials, the large scale commercial application of devices made with these materials seems conditioned to specific cases, mainly due to the high cost and the low durability, in compared to conventional technologies. In this study was produced electroluminescent devices by a process simple, drop casting. Were produced electroluminescent films containing Zn2SiO4:Mn immersed in a conductive polymer blend with different thicknesses. The morphological characteristics of these films were studied by scanning electronic microscopy. These films were used in the manufacture of electroluminescent devices, in which the light emission properties of the developed material were evaluated. The blend was composed of the conductive polymer Poly(o-methoxyaniline), doped with p-toluene sulfonic acid, and an insulating polymer, Poly(vinylidene fluoride) and its copolymer Poly(vinylidene fluoride-cotrifluoroethylene). To this blend was added Zn2SiO4:Mn, thereby forming the composite. A first set of devices was obtained using composites with different weight fraction of polymeric and inorganic phases, which were deposited by drop casting over ITO substrates. Upper electrodes of aluminum were deposited by thermal evaporation. The resulting device architecture was a sandwich type structure ITO/ composite/ Al. A second set of devices was obtained as self-sustaining films using the best composite composition obtained for the device of the first set. ITO electrodes were deposited by RF-Sputtering, in both faces of these films. The AC electrical characterization of the devices was made with impedance spectroscopy measurements, and the DC electrical characterization was performed using a source/ meter unit Keithley 2410. The devices light emission was measured using a photodiode coupled to a digital electrometer, Keithley 6517A. The devices electrooptical characterization showed that the...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho visa avaliar a influência do tipo de polipropileno no comportamento da blenda polipropileno/poliestireno de alto impacto (PP/HIPS) quando exposta à radiação UV. Foram usados uma resina virgem de PP (PPv) e outra reprocessada (PPrep). Inicialmente, avaliou-se o comportamento individual dos componentes da blenda, HIPS, PPv e PPrep, quando submetidos à radiação UV por até 15 semanas de exposição. As técnicas de caracterização utilizadas para monitorar o desempenho tanto das resinas individualmente quanto das blendas submetidas à radiação UV foram: propriedades mecânicas (tração e impacto), medidas de índice de fluidez (MFI), análise térmica (DSC), espectroscopia no infravermelho (FTIR) e microscopia eletrônica de varredura (MEV). A partir dos resultados com essas técnicas verificou-se que o PPv foi a resina mais afetada pela radiação e consequentemente as blendas preparadas com esse PP também foram mais sensíveis à fotodegradação do que as demais. Em termos de fotoestabilização este resultado mostra-se interessante, já que as blendas PP/HIPS preparadas com uma resina previamente degradada necessitariam de menores teores de aditivos do que esse mesmo tipo de blenda preparada com resina virgem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste trabalho compósitos foram obtidos a partir da blenda comercial 100% biodegradável Ecovio® C2224 da BASF, uma blenda formada por 55% em massa de um copoliéster biodegradável, o Ecoflex® (poli[(adipato de butileno)-co-(tereftalato de butileno)]) e 45% em massa de PLA poli(ácido láctico). Como carga, utilizaram-se dois tipos de argilas comerciais do grupo das esmectitas, ambas predominantemente montmorilonitas: Cloisite Sódica® e Cloisite 30B®. Também foi utilizado como carga a sílica coloidal comercial Aerosil 200®, com área superficial de 200 m2/g e diâmetro médio de partícula 12nm. Os compósitos estudados, ambos contendo 5% e 10% em massa de cargas, foram preparados em uma extrusora de rosca dupla, acoplada a um reômetro de torque. O estudo foi dividido em três etapas: 1ª) etapa: Obtenção e caracterização dos compósitos de Ecovio®/ argila e Ecovio® / sílica; 2ª) etapa: Avaliação da fotodegradação do Ecovio® puro e dos compósitos obtidos; 3ª) etapa: Avaliação da biodegradabilidade do Ecovio® puro e dos compósitos após exposição em câmara de UV. As propriedades mecânicas dos compósitos antes e depois de serem submetidos à exposição em câmara de UV foram avaliadas por ensaios de resistência à tração e resistência ao impacto Izod. Os resultados obtidos na 1ª etapa deste trabalho indicaram aumento nos valores de módulo de elasticidade de todos os compósitos, em relação à blenda pura. Destacam-se as composições com 5% e 10% em massa de sílica coloidal, que apresentaram aumentos de até 115% nos valores de módulo de elasticidade, sem perdas significativas em resistência à tração, alongamento e resistência ao impacto, quando comparadas à fase matriz. Na 2ª etapa, a partir de 20 dias de exposição, todas as composições (blendas e compósitos) apresentam redução nas propriedades mecânicas em função do aumento do tempo de exposição à radiação UV. Na 3ª etapa, independente do tipo ou teor de carga presente na blenda, todas as composições apresentaram índices de biodegradabilidade, depois de 120 dias, de 40 a 60%, devido à prévia exposição à radiação UV.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the options for plastics modification more convenient, both from a technical-scientific and economic, is the development of polymer blends by processing in the molten state. This work was divide into two stages, with the aim to study the phase morphology of binary blend PMMA / PET blend and this compatibilized by the addition of the poly(methyl methacrylate-co-glycidyl methacrylate-co-ethyl acrylate) copolymer (MMA-GMA-EA). In the first stage is analyzed the morphology of the blend at a preliminary stage where we used the bottle-grade PET in a Haake torque rheometer and the effect of compatibilizer in this blend was evaluated. In the second stage the blend was processed using the recycled PET in a single screw extruder and subsequently injection molding in the shape of specimens for mechanical tests. In both stages we used a transmission electron microscopy (TEM) to observe the morphologies of the samples and an image analyzer to characterize them. In the second stage, as well as analysis by TEM, tensile test, scanning electron microscopy (SEM) and atomic force microscopy (AFM) was performed to correlate the morphology with the mechanical properties. The samples used in morphological analyzes were sliced by cryo-ultramicrotomy technique for the analysis by TEM and the analysis by SEM and AFM, we used the flat face of the block after cut cryogenic. It was found that the size of the dispersed phase decreased with the addition of MMA-GMA-EA in blends prepared in a Haake. In the tensile test, the values of maximum tensile strength and modulus of elasticity is maintained in a range between the value of pure PMMA the pure PET, while the elongation at break was influenced by the composition by weight of the PMMA mixture. The coupling agent corroborated the results presented in the blend PMMA / PETrec / MMA-GMA-EA (80/15/5 %w/w), obtained by TEM, AFM and SEM. It was concluded that the techniques used had a good morphologic correlation, and can be confirmed for final analysis of the morphological characteristics of the blends PMMA / PET

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies indicate that a variation in the degree of crystallinity of the components of a polymer blend influences the mechanical properties. This variation can be obtained by subjecting the blend to heat treatments that lead to changes in the spherulitic structure. The aim of this work is to analyze the influence of different heat treatments on the variation of the degree of crystallinity and to establish a relationship between this variation and the mechanical behavior of poly(methyl methacrylate)/poly(ethylene terephthalate) recycled (PMMA / PETrec) with and without the use of compatibilizer agent poly(methyl methacrylate-al-glycidyl methacrylate-al-ethyl acrylate) (MMAGMA- EA). All compositions were subjected to two heat treatments. T1 heat treatment the samples were treated at 130 ° C for 30 minutes and cooled in air. In T2, the samples were treated at 230 ° C for 5 minutes and cooled to approximately -10 ° C. The variation of the degree of crystallinity was determined by the proportional relationship between crystallinity and density, with the density measured by pycnometry. The mechanical behavior was verified by tensile tests with and without the presence of notches and pre-cracks, and by method of fracture toughness in plane strain (KIC). We used the scanning electron microscopy (SEM) to analyze the fracture surface of the samples. The compositions subjected to heat treatment T1, in general, showed an increase in the degree of crystallinity in tensile strength and a tendency to decrease in toughness, while compositions undergoing treatment T2 showed that the opposite behavior. Therefore, this work showed that heat treatment can give a polymer blend further diversity of its properties, this being caused by changes in the crystal structure