21 resultados para Blazar
Resumo:
L'identificazione di un blazar è molto difficile, questo è un oggetto molto particolare e che ha un'attività molto ricca. Nella pratica l'identificazione di un blazar avviene confrontando la sua emissione in banda radio con la sua emissione in banda gamma, che sono entrambe proprie dei blazar. Il problema è che non si dispone di un telescopio in grado di rivelare con estrema precisione entrambe le bande, quindi si procede utilizzando i dati radio provenienti da un dato radiotelescopio e i dati in banda gamma provenienti da un altro telescopio. Quando le emissioni nelle due bande presentano, ad esempio, una variabilità simultanea, l'identificazione è certa. Ma questa minoranza di casi non è molto frequente e quindi spesso si procede con un'analisi probabilistica basata sulle posizioni delle sorgenti. Il lancio di Fermi nel 2008 ha portato ad un fortissimo aumento del numero di sorgenti gamma note e, fra queste, la maggior parte sono blazar. Una significativa frazione di queste sorgenti Fermi (circa il 30%) rimane non identificata. In questo lavoro vengono inizialmente caratterizzate le proprietà radio dei blazar e in particolare dei blazar gamma noti finora. In seguito verrà approfondita l'analisi delle sorgenti Fermi non identificate per stabilire una possibile compatibilità con le proprietà dei blazar e quindi per cercare di capire se queste sorgenti possano essere a loro volta dei blazar non ancora riconosciuti.
Resumo:
We organized an international campaign to observe the blazar 0716+714 in the optical band. The observations took place from February 24, 2009 to February 26, 2009. The global campaign was carried out by observers from more that sixteen countries and resulted in an extended light curve nearly seventy-eight hours long. The analysis and the modeling of this light curve form the main work of this dissertation project. In the first part of this work, we present the time series and noise analyses of the data. The time series analysis utilizes discrete Fourier transform and wavelet analysis routines to search for periods in the light curve. We then present results of the noise analysis which is based on the idea that each microvariability curve is the realization of the same underlying stochastic noise processes in the blazar jet. ^ Neither reoccuring periods nor random noise can successfully explain the observed optical fluctuations. Hence in the second part, we propose and develop a new model to account for the microvariability we see in blazar 0716+714. We propose that the microvariability is due to the emission from turbulent regions in the jet that are energized by the passage of relativistic shocks. Emission from each turbulent cell forms a pulse of emission, and when convolved with other pulses, yields the observed light curve. We use the model to obtain estimates of the physical parameters of the emission regions in the jet.^
Resumo:
The BL Lac object 1ES 1011+496 was discovered at Very High Energy (VHE, E>100GeV) γ-rays by MAGIC in spring 2007. Before that the source was little studied in different wavelengths. Therefore a multi-wavelength (MWL) campaign was organized in spring 2008. Along MAGIC, the MWL campaign included the Mets¨ahovi radio observatory, Bell and KVA optical telescopes and the Swift and AGILE satellites. MAGIC observations span from March to May, 2008 for a total of 27.9 hours, of which 19.4 hours remained after quality cuts. The light curve showed no significant variability yielding an integral flux above 200 GeV of (1.3 ± 0.3) × 10^(−11) photons cm^(−2) s^( −1) . The differential VHE spectrum could be described with a power-law function with a spectral index of 3.3 ± 0.4. Both results were similar to those obtained during the discovery. Swift XRT observations revealed an X-ray flare, characterized by a harder-when-brighter trend, as is typical for high synchrotron peak BL Lac objects (HBL). Strong optical variability was found during the campaign, but no conclusion on the connection between the optical and VHE γ-ray bands could be drawn. The contemporaneous SED shows a synchrotron dominated source, unlike concluded in previous work based on non-simultaneous data, and is well described by a standard one–zone synchrotron self–Compton model. We also performed a study on the source classification. While the optical and X-ray data taken during our campaign show typical characteristics of an HBL, we suggest, based on archival data, that 1ES 1011+496 is actually a borderline case between intermediate and high synchrotron peak frequency BL Lac objects.
Resumo:
Context. 1ES 1011+496 (z = 0.212) was discovered in very high-energy (VHE, E >100 GeV) γ rays with MAGIC in 2007. The absence of simultaneous data at lower energies led to an incomplete characterization of the broadband spectral energy distribution (SED). Aims. We study the source properties and the emission mechanisms, probing whether a simple one-zone synchrotron self-Compton (SSC) scenario is able to explain the observed broadband spectrum. Methods. We analyzed data in the range from VHE to radio data from 2011 and 2012 collected by MAGIC, Fermi-LAT, Swift, KVA, OVRO, and Metsähovi in addition to optical polarimetry data and radio maps from the Liverpool Telescope and MOJAVE. Results. The VHE spectrum was fit with a simple power law with a photon index of 3.69 ± 0.22 and a flux above 150 GeV of (1.46±0.16)×10^(−11) ph cm^(−2) s^(−1) . The source 1ES 1011+496 was found to be in a generally quiescent state at all observed wavelengths, showing only moderate variability from radio to X-rays. A low degree of polarization of less than 10% was measured in optical, while some bright features polarized up to 60% were observed in the radio jet. A similar trend in the rotation of the electric vector position angle was found in optical and radio. The radio maps indicated a superluminal motion of 1.8 ± 0.4 c, which is the highest speed statistically significant measured so far in a high-frequency-peaked BL Lac. Conclusions. For the first time, the high-energy bump in the broadband SED of 1ES 1011+496 could be fully characterized from 0.1 GeV to 1 TeV, which permitted a more reliable interpretation within the one-zone SSC scenario. The polarimetry data suggest that at least part of the optical emission has its origin in some of the bright radio features, while the low polarization in optical might be due to the contribution of parts of the radio jet with different orientations of the magnetic field with respect to the optical emission.
Resumo:
Lo scopo di questo lavoro è quello di analizzare i dati raccolti dal Large Area Telescope a bordo del satellite Fermi con l'obiettivo di ricavare il flusso di raggi-γ, di energia compresa tra 100 MeV e 300 GeV, prodotti dal Blazar PKS B1424-418 in un periodo compreso tra l'1 Gennaio 2012 e il 4 Settembre 2016. Secondo alcuni modelli questo blazar potrebbe essere infatti la prima sorgente di Ultra High Energy Cosmic Ray associata sperimentalmente all'emissione di neutrini. L'analisi dei dati è effettuata tramite il pacchetto di software Fermi Science Tools.
Resumo:
We organized an international campaign to observe the blazar 0716+714 in the optical band. The observations took place from February 24, 2009 to February 26, 2009. The global campaign was carried out by observers from more that sixteen countries and resulted in an extended light curve nearly seventy-eight hours long. The analysis and the modeling of this light curve form the main work of this dissertation project. In the first part of this work, we present the time series and noise analyses of the data. The time series analysis utilizes discrete Fourier transform and wavelet analysis routines to search for periods in the light curve. We then present results of the noise analysis which is based on the idea that each microvariability curve is the realization of the same underlying stochastic noise processes in the blazar jet. Neither reoccuring periods nor random noise can successfully explain the observed optical fluctuations. Hence in the second part, we propose and develop a new model to account for the microvariability we see in blazar 0716+714. We propose that the microvariability is due to the emission from turbulent regions in the jet that are energized by the passage of relativistic shocks. Emission from each turbulent cell forms a pulse of emission, and when convolved with other pulses, yields the observed light curve. We use the model to obtain estimates of the physical parameters of the emission regions in the jet.
Resumo:
This thesis describes a search for very high energy (VHE) gamma-ray emission from the starburst galaxy IC 342. The analysis was based on data from the 2003 — 2004 observing season recorded using the Whipple 10-metre imaging atmospheric Cherenkov telescope located on Mount Hopkins in southern Arizona. IC 342 may be classed as a non-blazar type galaxy and to date only a few such galaxies (M 87, Cen A, M 82 and NGC 253) have been detected as VHE gamma-ray sources. Analysis of approximately 24 hours of good quality IC 342 data, consisting entirely of ON/OFF observations, was carried out using a number of methods (standard Supercuts, optimised Supercuts, scaled optimised Supercuts and the multivariate kernel analysis technique). No evidence for TeV gamma-ray emission from IC 342 was found. The significance was 0.6 a with a nominal rate of 0.04 ± 0.06 gamma rays per minute. The flux upper limit above 600 GeV (at 99.9 % confidence) was determined to be 5.5 x 10-8 m-2 s-1, corresponding to 8 % of the Crab Nebula flux in the same energy range.
Resumo:
Objective: To produce age-related normograms for serum antimullerian hormone (AMH) level in infertile women without polycystic ovaries (non-PCO).Design: Retrospective cohort analysis.Setting: Fifteen academic reproductive centers.Patient(s): A total of 3,871 infertile women.Intervention(s): Blood sampling for AMH level.Main Outcome Measure(s): Serum AMH levels and correlation between age and different percentiles of AMH.Result(s): Age-related normograms for the 3rd, 10th, 25th, 50th, 75th, 90th, and 97th percentiles of AMH were produced. We found that the curves of AMH by age for the 3rd to 50th percentiles fit the model and appearance of linear relation, whereas the curves of >75th percentiles fit cubic relation. There were significant differences in AMH and FSH levels and in antral follicle count (AFC) among women aged 24-33 years, 34-38 years, and >= 39 years. Multivariate stepwise linear regression analysis of FSH, age, AFC, and the type of AMH kit as predictors of AMH level shows that all variables are independently associated with AMH level, in the following order: AFC, FSH, type of AMH kit, and age.Conclusion(s): Age-related normograms in non-PCO infertile women for the 3rd to 97th percentiles were produced. These normograms could provide a reference guide for the clinician to consult women with infertility. However, future validation with longitudinal data is still needed. (Fertil Steril (R) 2011; 95: 2359-63. (C) 2011 by American Society for Reproductive Medicine.)
Resumo:
The modern generation of Cherenkov telescopes has revealed a new population of gamma-ray sources in the Galaxy. Some of them have been identified with previously known X-ray binary systems while other remain without clear counterparts a lower energies. Our initial goal here was reporting on extensive radio observations of the first extended and yet unidentified source, namely TeV J2032+4130. This object was originally detected by the HEGRA telescope in the direction of the Cygnus OB2 region and its nature has been a matter of debate during the latest years. The situation has become more complex with the Whipple and MILAGRO telescopes new TeV detections in the same field which could be consistent with the historic HEGRA source, although a different origin cannot be ruled out. Aims.We aim to pursue our radio exploration of the TeV J2032+4130 position that we initiated in a previous paper but taking now into account the latest results from new Whipple and MILAGRO TeV telescopes. The data presented here are an extended follow up of our previous work. Methods.Our investigation is mostly based on interferometric radio observations with the Giant Metre Wave Radio Telescope (GMRT) close to Pune (India) and the Very Large Array (VLA) in New Mexico (USA). We also conducted near infrared observations with the 3.5 m telescope and the OMEGA2000 camera at the Centro Astronómico Hispano Alemán (CAHA) in Almería (Spain). Results.We present deep radio maps centered on the TeV J2032+4130 position at different wavelengths. In particular, our 49 and 20 cm maps cover a field of view larger than half a degree that fully includes the Whipple position and the peak of MILAGRO emission. Our most important result here is a catalogue of 153 radio sources detected at 49 cm within the GMRT antennae primary beam with a full width half maximum (FWHM) of 43 arc-minute. Among them, peculiar sources inside the Whipple error ellipse are discussed in detail, including a likely double-double radio galaxy and a one-sided jet source of possible blazar nature. This last object adds another alternative counterpart possibility to be considered for both the HEGRA, Whipple and MILAGRO emission. Moreover, our multi-configuration VLA images reveal the non-thermal extended emission previously reported by us with improved angular resolution. Its non-thermal spectral index is also confirmed thanks to matching beam observations at the 20 and 6 cm wavelengths.
Resumo:
Wide-range spectral coverage of blazar-type active galactic nuclei is of paramount importance for understanding the particle acceleration mechanisms assumed to take place in their jets. The Major Atmospheric Gamma Imaging Cerenkov (MAGIC) telescope participated in three multiwavelength (MWL) campaigns, observing the blazar Markarian (Mkn) 421 during the nights of April 28 and 29, 2006, and June 14, 2006. Aims. We analyzed the corresponding MAGIC very-high energy observations during 9 nights from April 22 to 30, 2006 and on June 14, 2006. We inferred light curves with sub-day resolution and night-by-night energy spectra. Methods. MAGIC detects γ-rays by observing extended air showers in the atmosphere. The obtained air-shower images were analyzed using the standard MAGIC analysis chain. Results. A strong γ-ray signal was detected from Mkn 421 on all observation nights. The flux (E > 250 GeV) varied on night-by-night basis between (0.92±0.11) × 10-10 cm-2 s-1 (0.57 Crab units) and (3.21±0.15) × 10-10 cm-2 s-1 (2.0 Crab units) in April 2006. There is a clear indication for intra-night variability with a doubling time of 36± min on the night of April 29, 2006, establishing once more rapid flux variability for this object. For all individual nights γ-ray spectra could be inferred, with power-law indices ranging from 1.66 to 2.47. We did not find statistically significant correlations between the spectral index and the flux state for individual nights. During the June 2006 campaign, a flux substantially lower than the one measured by the Whipple 10-m telescope four days later was found. Using a log-parabolic power law fit we deduced for some data sets the location of the spectral peak in the very-high energy regime. Our results confirm the indications of rising peak energy with increasing flux, as expected in leptonic acceleration models.
Resumo:
In this dissertation, active galactic nuclei (AGN) are discussed, as they are seen with the high-resolution radio-astronomical technique called Very Long Baseline Interferometry (VLBI). This observational technique provides very high angular resolution (_ 10−300 = 1 milliarcsecond). VLBI observations, performed at different radio frequencies (multi-frequency VLBI), allow to penetrate deep into the core of an AGN to reveal an otherwise obscured inner part of the jet and the vicinity of the AGN’s central engine. Multi-frequency VLBI data are used to scrutinize the structure and evolution of the jet, as well as the distribution of the polarized emission. These data can help to derive the properties of the plasma and the magnetic field, and to provide constraints to the jet composition and the parameters of emission mechanisms. Also VLBI data can be used for testing the possible physical processes in the jet by comparing observational results with results of numerical simulations. The work presented in this thesis contributes to different aspects of AGN physics studies, as well as to the methodology of VLBI data reduction. In particular, Paper I reports evidence of optical and radio emission of AGN coming from the same region in the inner jet. This result was obtained via simultaneous observations of linear polarization in the optical and in radio using VLBI technique of a sample of AGN. Papers II and III describe, in detail, the jet kinematics of the blazar 0716+714, based on multi-frequency data, and reveal a peculiar kinematic pattern: plasma in the inner jet appears to move substantially faster that that in the large-scale jet. This peculiarity is explained by the jet bending, in Paper III. Also, Paper III presents a test of the new imaging technique for VLBI data, the Generalized Maximum Entropy Method (GMEM), with the observed (not simulated) data and compares its results with the conventional imaging. Papers IV and V report the results of observations of the circularly polarized (CP) emission in AGN at small spatial scales. In particular, Paper IV presents values of the core CP for 41 AGN at 15, 22 and 43 GHz, obtained with the help of the standard Gain transfer (GT) method, which was previously developed by D. Homan and J.Wardle for the calibration of multi-source VLBI observations. This method was developed for long multi-source observations, when many AGN are observed in a single VLBI run. In contrast, in Paper V, an attempt is made to apply the GT method to single-source VLBI observations. In such observations, the object list would include only a few sources: a target source and two or three calibrators, and it lasts much shorter than the multi-source experiment. For the CP calibration of a single-source observation, it is necessary to have a source with zero or known CP as one of the calibrators. If the archival observations included such a source to the list of calibrators, the GT could also be used for the archival data, increasing a list of known AGN with the CP at small spatial scale. Paper V contains also calculation of contributions of different sourced of errors to the uncertainty of the final result, and presents the first results for the blazar 0716+714.
Resumo:
Context: BL Lacs are the most numerous extragalactic objects which are detected in Very High Energy (VHE) gamma-rays band. They are a subclass of blazars. Large flux variability amplitude, sometimes happens in very short time scale, is a common characteristic of them. Significant optical polarization is another main characteristics of BL Lacs. BL Lacs' spectra have a continuous and featureless Spectral Energy Distribution (SED) which have two peaks. Among 1442 BL Lacs in the Roma-BZB catalogue, only 51 are detected in VHE gamma-rays band. BL Lacs are most numerous (more than 50% of 514 objects) objects among the sources that are detected above 10 GeV by FERMI-LAT. Therefore, many BL Lacs are expected to be discovered in VHE gamma-rays band. However, due to the limitation on current and near future technology of Imaging Air Cherenkov Telescope, astronomers are forced to predict whether an object emits VHE gamma-rays or not. Some VHE gamma-ray prediction methods are already introduced but still are not confirmed. Cross band correlations are the building blocks of introducing VHE gamma-rays prediction method. Aims: We will attempt to investigate cross band correlations between flux energy density, luminosity and spectral index of the sample. Also, we will check whether recently discovered MAGIC J2001+435 is a typical BL Lac. Methods: We select a sample of 42 TeV BL Lacs and collect 20 of their properties within five energy bands from literature and Tuorla blazar monitoring program database. All of the data are synchronized to be comparable to each other. Finally, we choose 55 pair of datasets for cross band correlations finding and investigating whether there is any correlation between each pair. For MAGIC J2001+435 we analyze the publicly available SWIFT-XRT data, and use the still unpublished VHE gamma-rays data from MAGIC collaboration. The results are compared to the other sources of the sample. Results: Low state luminosity of multiple detected VHE gamma-rays is strongly correlated luminosities in all other bands. However, the high state does not show such strong correlations. VHE gamma-rays single detected sources have similar behaviour to the low state of multiple detected ones. Finally, MAGIC J2001+435 is a typical TeV BL Lac. However, for some of the properties this source is located at the edge of the whole sample (e.g. in terms of X-rays flux). Keywords: BL Lac(s), Population study, Correlations finding, Multi wavelengths analysis, VHE gamma-rays, gamma-rays, X-rays, Optical, Radio
Resumo:
In this paper, we present multiband optical polarimetric observations of the very-high energy blazar PKS 2155-304 made simultaneously with a HESS/Fermi high-energy campaign in 2008, when the source was found to be in a low state. The intense daily coverage of the data set allowed us to study in detail the temporal evolution of the emission, and we found that the particle acceleration time-scales are decoupled from the changes in the polarimetric properties of the source. We present a model in which the optical polarimetric emission originates at the polarized mm-wave core and propose an explanation for the lack of correlation between the photometric and polarimetric fluxes. The optical emission is consistent with an inhomogeneous synchrotron source in which the large-scale field is locally organized by a shock in which particle acceleration takes place. Finally, we use these optical polarimetric observations of PKS 2155-304 at a low state to propose an origin for the quiescent gamma-ray flux of the object, in an attempt to provide clues for the source of its recently established persistent TeV emission.
Resumo:
Lo scenario di unificazione degli AGN caratterizza le molteplici proprietà di questi oggetti in termini del differente angolo di vista rispetto ad un sistema costituito da un toro oscurante, un disco di accrescimento che alimenta il SMBH e nubi di gas che circondano il buco nero. Circa il 10% degli AGN sono forti sorgenti radio. Questi oggetti, detti AGN Radio-Loud, sono caratterizzati da getti relativistici emessi trasversalmente rispetto al disco di accrescimento e comprendono le radio galassie e i blazar. In accordo con il modello unificato, le radio galassie (MAGN), rappresentano i blazar visti a grandi angoli di inclinazione del getto rispetto alla linea di vista. Nei blazar la radiazione emessa dai getti su scale del pc viene amplificata da effetti relativistici dando origine a spettri piatti con elevata polarizzazione ottica e forte variabilità. Questi oggetti rappresentano le sorgenti più brillanti identificate nel cielo gamma extragalattico. I MAGN, a differenza dei blazar, mostrano spettri ripidi e strutture radio quasi simmetriche. In queste sorgenti, l'effetto del Doppler boosting è meno evidente a causa del grande angolo di inclinazione del getto. In soli 3 mesi di osservazioni scientifiche effettuate con il satellite Fermi è stata rivelata emissione gamma da parte delle radio galassie NGC 1275 e Cen A. I MAGN rappresentano una nuova classe di sorgenti gamma. Tuttavia, il numero di radio galassie rivelate è sorprendentemente piccolo ponendo degli interrogativi sui meccanismi di emissione alle alte energie di questi oggetti. Nel presente lavoro di tesi, si analizzeranno i dati gamma raccolti dal LAT durante i primi 5 anni di osservazioni scientifiche per un campione di 10 radio galassie più brillanti selezionate dai cataloghi B2 e BCS. L'obiettivo principale sarà migliorare la statistica e cercare di comprendere la natura dell'emissione alle alte energie da parte delle radio galassie.
Resumo:
B0218+357 è un blazar soggetto al lensing che si trova a z=0.944. Questo sistema consiste in due componenti compatte (A e B) e un anello di Einstein. Recentemente è stato associato ad una sorgente gamma soggetta a burst osservata con il satellite Fermi-LAT. Questo blazar ha mostrato una forte variabilità in banda γ da agosto a settembre del 2012. Gli episodi di variabilità osservati hanno consentito di misurare per la prima volta in banda gamma il ritardo temporale previsto dalla teoria del lensing gravitazionale. Le osservazioni in banda gamma sono state seguite da un programma di monitoring con il Very Long Baseline Array (VLBA) in banda radio con lo scopo di verificare l’esistenza di una correlazione tra l’emissione nelle due bande. In questa Tesi tali osservazioni radio sono state analizzate con lo scopo di studiare la variabilità di B0218+357 e, quindi, attestare la connessione tra l’emissione alle alte energie e quella in banda radio. L’obiettivo principale di questo lavoro di Tesi è quello di studiare l’evoluzione della densità di flusso, dell’indice spettrale e della morfologia delle immagini A e B e delle loro sottocomponenti. I dati analizzati sono stati ottenuti con l’interferometro VLBA a tre frequenze di osser- vazione: 2.3, 8.4 GHz (4 epoche con osservazioni simultanee alle due frequenze) e 22 GHz (16 epoche). Le osservazioni hanno coperto un periodo di circa due mesi, subito successivo al flare in banda gamma. La riduzione dei dati è stata effettuata con il pacchetto AIPS. Dall’analisi delle immagini, nella componente B è possibile riconoscere la tipica struttura nucleo-getto chiaramente a tutte e tre le frequenze, invece nella componente A questa struttura è identificabile solo a 22 GHz. A 2.3 e 8.4 GHz la risoluzione non è sufficiente a risolvere nucleo e getto della componente A e l’emissione diffusa risulta dominante. Utilizzando il metodo dello stacking sulle immagini a 2.3 GHz, è stato possibile rivelare le parti più brillanti dell’Einstein ring associato a questa sorgente. Questo è stato possibile poiché la sorgente non ha mostrato alcun segno di variabilità significativa né di struttura né di flusso nelle componenti. Quindi dall’analisi delle curve di luce delle due componenti A e B non è emersa una variabilità significativa chiaramente associabile al flare osservato in banda gamma. Per verificare questo risultato, le curve di luce ottenute sono state confrontate con le osservazioni del radio telescopio OVRO (15 GHz) nel periodo corrispondente alle nostre osservazioni. La curva di luce OVRO è risultata in pieno accordo con le curve di luce ottenute durante questo lavoro di tesi e ha confermato che B0218+257 non ha mostrato un’importante attività radio nel periodo delle osservazioni VLBA. In definitiva, la mancanza di variabilità radio associata a quella osservata nei raggi gamma può essere dovuta al fatto che la regione in cui si è originato il flare gamma è otticamente spessa alle lunghezze d’onda radio, oppure non esiste una precisa correlazione tra le due emissioni, rimanendo quindi un problema aperto da investigare.