978 resultados para Blasius Equation
Resumo:
On this paper, the results of an experimental study oil the hydraulic friction loss for small-diameter polyethylene pipes are reported. The experiment was carried out using a range of Reynolds number between 6000 to 72000, obtained by varying discharge at 20 degrees C water temperature, with internal pipe diameters of 10.0 mm, 12.9 mm, 16.1 mm, 17.4 mm and 19.7 mm. According to the analysis results and experimental conditions, the friction factor 0 of the Darcy-Weisbach equation call be estimated with c = 0.300 and m = 0.25. The Blasius equation (c = 0.316 and m = 0.25) gives an overestimate of friction loss, although this fact is non-restrictive for micro-irrigation system designs. The analysis shows that both the Blasius and the adjusted equation parameters allow for accurate friction factor estimates, characterized by low mean error (5.1%).
Resumo:
The objective of this research is to present a study on a relationship between the local head loss in connection of emitters in pipes with different diameters used in drip irrigation, with the online geometry of the emitter connectors, that allows an easy quantification of such head loss regarding of the size of the connectors. The experiment was carried out according to the Reynolds Numbers at a turbulent flow interval, obtained by the variation of the pipe outflow at a constant temperature of water. The results indicated that the friction factor of the Darcy-Weisbach equation can be estimated by the Blasius equation with the coefficients b = 0.300 and m = 0.25, for the above mentioned pipes. The head losses produced by the connections of the emitters, in relation to the pipe without emitter, was of 62%. A relationship between the kinetic load coefficient (K) and the index of blockage (IO) provoked by the online connector is presented by an algebraic equation which shows a coefficient of adjustment of approximately 96%.
Resumo:
[1] The profiles for the water table height h(x, t) in a shallow sloping aquifer are reexamined with a solution of the nonlinear Boussinesq equation. We demonstrate that the previous anomaly first reported by Brutsaert [1994] that the point at which the water table h first becomes zero at x = L at time t = t(c) remains fixed at this point for all times t > t(c) is actually a result of the linearization of the Boussinesq equation and not, as previously suggested [Brutsaert, 1994; Verhoest and Troch, 2000], a result of the Dupuit assumption. Rather, by examination of the nonlinear Boussinesq equation the drying front, i.e., the point x(f) at which h is zero for times t greater than or equal to t(c), actually recedes downslope as physically expected. This points out that the linear Boussinesq equation should be used carefully when a zero depth is obtained as the concept of an average'' depth loses meaning at that time.
Resumo:
Accelerated stability tests are indicated to assess, within a short time, the degree of chemical degradation that may affect an active substance, either alone or in a formula, under normal storage conditions. This method is based on increased stress conditions to accelerate the rate of chemical degradation. Based on the equation of the straight line obtained as a function of the reaction order (at 50 and 70 ºC) and using Arrhenius equation, the speed of the reaction was calculated for the temperature of 20 ºC (normal storage conditions). This model of accelerated stability test makes it possible to predict the chemical stability of any active substance at any given moment, as long as the method to quantify the chemical substance is available. As an example of the applicability of Arrhenius equation in accelerated stability tests, a 2.5% sodium hypochlorite solution was analyzed due to its chemical instability. Iodometric titration was used to quantify free residual chlorine in the solutions. Based on data obtained keeping this solution at 50 and 70 ºC, using Arrhenius equation and considering 2.0% of free residual chlorine as the minimum acceptable threshold, the shelf-life was equal to 166 days at 20 ºC. This model, however, makes it possible to calculate shelf-life at any other given temperature.
Resumo:
In this paper we study the existence and regularity of mild solutions for a class of abstract partial neutral integro-differential equations with unbounded delay.
Resumo:
Using the solutions of the gap equations of the magnetic-color-flavor-locked (MCFL) phase of paired quark matter in a magnetic field, and taking into consideration the separation between the longitudinal and transverse pressures due to the field-induced breaking of the spatial rotational symmetry, the equation of state of the MCFL phase is self-consistently determined. This result is then used to investigate the possibility of absolute stability, which turns out to require a field-dependent ""bag constant"" to hold. That is, only if the bag constant varies with the magnetic field, there exists a window in the magnetic field vs bag constant plane for absolute stability of strange matter. Implications for stellar models of magnetized (self-bound) strange stars and hybrid (MCFL core) stars are calculated and discussed.
Resumo:
We analyze the irreversibility and the entropy production in nonequilibrium interacting particle systems described by a Fokker-Planck equation by the use of a suitable master equation representation. The irreversible character is provided either by nonconservative forces or by the contact with heat baths at distinct temperatures. The expression for the entropy production is deduced from a general definition, which is related to the probability of a trajectory in phase space and its time reversal, that makes no reference a priori to the dissipated power. Our formalism is applied to calculate the heat conductance in a simple system consisting of two Brownian particles each one in contact to a heat reservoir. We show also the connection between the definition of entropy production rate and the Jarzynski equality.
Resumo:
We present a derivation of the Redfield formalism for treating the dissipative dynamics of a time-dependent quantum system coupled to a classical environment. We compare such a formalism with the master equation approach where the environments are treated quantum mechanically. Focusing on a time-dependent spin-1/2 system we demonstrate the equivalence between both approaches by showing that they lead to the same Bloch equations and, as a consequence, to the same characteristic times T(1) and T(2) (associated with the longitudinal and transverse relaxations, respectively). These characteristic times are shown to be related to the operator-sum representation and the equivalent phenomenological-operator approach. Finally, we present a protocol to circumvent the decoherence processes due to the loss of energy (and thus, associated with T(1)). To this end, we simply associate the time dependence of the quantum system to an easily achieved modulated frequency. A possible implementation of the protocol is also proposed in the context of nuclear magnetic resonance.
Resumo:
In this work, a new boundary element formulation for the analysis of plate-beam interaction is presented. This formulation uses a three nodal value boundary elements and each beam element is replaced by its actions on the plate, i.e., a distributed load and end of element forces. From the solution of the differential equation of a beam with linearly distributed load the plate-beam interaction tractions can be written as a function of the nodal values of the beam. With this transformation a final system of equation in the nodal values of displacements of plate boundary and beam nodes is obtained and from it, all unknowns of the plate-beam system are obtained. Many examples are analyzed and the results show an excellent agreement with those from the analytical solution and other numerical methods. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This note addresses the relation between the differential equation of motion and Darcy`s law. It is shown that, in different flow conditions, three versions of Darcy`s law can be rigorously derived from the equation of motion.
Resumo:
It is well known that structures subjected to dynamic loads do not follow the usual similarity laws when the material is strain rate sensitive. As a consequence, it is not possible to use a scaled model to predict the prototype behaviour. In the present study, this problem is overcome by changing the impact velocity so that the model behaves exactly as the prototype. This exact solution is generated thanks to the use of an exponential constitutive law to infer the dynamic flow stress. Furthermore, it is shown that the adopted procedure does not rely on any previous knowledge of the structure response. Three analytical models are used to analyze the performance of the technique. It is shown that perfect similarity is achieved, regardless of the magnitude of the scaling factor. For the class of material used, the solution outlined has long been sought, inasmuch as it allows perfect similarity for strain rate sensitive structures subject to impact loads. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this work, a study on the role of the long-range term of excess Gibbs energy models in the modeling of aqueous systems containing polymers and salts is presented. Four different approaches on how to account for the presence of polymer in the long-range term were considered, and simulations were conducted considering aqueous solutions of three different salts. The analysis of water activity curves showed that, in all cases, a liquid-phase separation may be introduced by the sole presence of the polymer in the long-range term, regardless of how it is taken into account. The results lead to the conclusion that there is no single exact solution for this problem, and that any kind of approach may introduce inconsistencies.
Resumo:
Pitzer`s equation for the excess Gibbs energy of aqueous solutions of low-molecular electrolytes is extended to aqueous solutions of polyelectrolytes. The model retains the original form of Pitzer`s model (combining a long-range term, based on the Debye-Huckel equation, with a short-range term similar to the virial equation where the second osmotic virial coefficient depends on the ionic strength). The extension consists of two parts: at first, it is assumed that a constant fraction of the monomer units of the polyelectrolyte is dissociated, i.e., that fraction does not depend on the concentration of the polyelectrolyte, and at second, a modified expression for the ionic strength (wherein each charged monomer group is taken into account individually) is introduced. This modification is to account for the presence of charged polyelectrolyte chains, which cannot be regarded as punctual charges. The resulting equation was used to correlate osmotic coefficient data of aqueous solutions of a single polyelectrolyte as well as of binary mixtures of a single polyelectrolyte and a salt with low-molecular weight. It was additionally applied to correlate liquid-liquid equilibrium data of some aqueous two-phase systems that might form when a polyelectrolyte and another hydrophilic but neutral polymer are simultaneously dissolved in water. A good agreement between the experimental data and the correlation result is observed for all investigated systems. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A method based on a specific power-law relationship between the hydraulic head and the Boltzmann variable was recently presented. We generalized this relationship to a range of powers and extended the solution to include the saturated zone. As a result, the new solution satisfies the Bruce and Klute equation exactly.
Resumo:
Leaf wetness duration (LWD) is related to plant disease occurrence and is therefore a key parameter in agrometeorology. As LWD is seldom measured at standard weather stations, it must be estimated in order to ensure the effectiveness of warning systems and the scheduling of chemical disease control. Among the models used to estimate LWD, those that use physical principles of dew formation and dew and/or rain evaporation have shown good portability and sufficiently accurate results for operational use. However, the requirement of net radiation (Rn) is a disadvantage foroperational physical models, since this variable is usually not measured over crops or even at standard weather stations. With the objective of proposing a solution for this problem, this study has evaluated the ability of four models to estimate hourly Rn and their impact on LWD estimates using a Penman-Monteith approach. A field experiment was carried out in Elora, Ontario, Canada, with measurements of LWD, Rn and other meteorological variables over mowed turfgrass for a 58 day period during the growing season of 2003. Four models for estimating hourly Rn based on different combinations of incoming solar radiation (Rg), airtemperature (T), relative humidity (RH), cloud cover (CC) and cloud height (CH), were evaluated. Measured and estimated hourly Rn values were applied in a Penman-Monteith model to estimate LWD. Correlating measured and estimated Rn, we observed that all models performed well in terms of estimating hourly Rn. However, when cloud data were used the models overestimated positive Rn and underestimated negative Rn. When only Rg and T were used to estimate hourly Rn, the model underestimated positive Rn and no tendency was observed for negative Rn. The best performance was obtained with Model I, which presented, in general, the smallest mean absolute error (MAE) and the highest C-index. When measured LWD was compared to the Penman-Monteith LWD, calculated with measured and estimated Rn, few differences were observed. Both precision and accuracy were high, with the slopes of the relationships ranging from 0.96 to 1.02 and R-2 from 0.85 to 0.92, resulting in C-indices between 0.87 and 0.93. The LWD mean absolute errors associated with Rn estimates were between 1.0 and 1.5h, which is sufficient for use in plant disease management schemes.