927 resultados para Blade of irrigation
Resumo:
A plethora of literature exists on irrigation development. However, only a few studies analyse the distributional issues associated with irrigation induced technological changes (IITC) in the context of commodity markets. Furthermore, these studies deal with only the theoretical arguments and to date no proper investigation has been conducted to examine the long-term benefits of adopting modern irrigation technology. This study investigates the long-term benefit changes of irrigation induced technological changes using data from Sri Lanka with reference to rice farming. The results show that (1) adopting modern technology on irrigation increases the overall social welfare through consumption of a larger quantity at a lower cost (2) the magnitude, sensitivity and distributional gains depend on the price elasticity of demand and supply as well as the size of the marketable surplus (3) non-farm sector gains are larger than farm sector gains (4) the distribution of the benefits among different types of producers depend on the magnitude of the expansion of the irrigated areas as well as the competition faced by traditional farmers (5) selective technological adoption and subsidies have a detrimental effect on the welfare of other producers who do not enjoy the same benefits (6) the short-term distributional effects are more severe than the long-term effects among different groups of farmers.
Resumo:
Cotton is one of the most important irrigated crops in subtropical Australia. In recent years, cotton production has been severely affected by the worst drought in recorded history, with the 2007–08 growing season recording the lowest average cotton yield in 30 years. The use of a crop simulation model to simulate the long-term temporal distribution of cotton yields under different levels of irrigation and the marginal value for each unit of water applied is important in determining the economic feasibility of current irrigation practices. The objectives of this study were to: (i) evaluate the CROPGRO-Cotton simulation model for studying crop growth under deficit irrigation scenarios across ten locations in New South Wales (NSW) and Queensland (Qld); (ii) evaluate agronomic and economic responses to water inputs across the ten locations; and (iii) determine the economically optimal irrigation level. The CROPGRO-Cotton simulation model was evaluated using 2 years of experimental data collected at Kingsthorpe, Qld. The model was further evaluated using data from nine locations between northern NSW and southern Qld. Long-term simulations were based on the prevalent furrowirrigation practice of refilling the soil profile when the plant -available soil water content is<50%. The model closely estimated lint yield for all locations evaluated. Our results showed that the amounts of water needed to maximise profit and maximise yield are different, which has economic and environmental implications. Irrigation needed to maximise profits varied with both agronomic and economic factors, which can be quite variable with season and location. Therefore, better tools and information that consider the agronomic and economic implications of irrigation decisions need to be developed and made available to growers.
Resumo:
Background and Aims: Irrigation management affects soil water dynamics as well as the soil microbial carbon and nitrogen turnover and potentially the biosphere-atmosphere exchange of greenhouse gasses (GHG). We present a study on the effect of three irrigation treatments on the emissions of nitrous oxide (N2O) from irrigated wheat on black vertisols in South-Eastern Queensland, Australia. Methods: Soil N2O fluxes from wheat were monitored over one season with a fully automated system that measured emissions on a sub-daily basis. Measurements were taken from 3 subplots for each treatment within a randomized split-plot design. Results: Highest N2O emissions occurred after rainfall or irrigation and the amount of irrigation water applied was found to influence the magnitude of these “emission pulses”. Daily N2O emissions varied from -0.74 to 20.46 g N2O-N ha-1 day-1 resulting in seasonal losses ranging from 0.43 to 0.75 kg N2O N ha-1 season -1 for the different irrigation treatments. Emission factors (EF = proportion of N fertilizer emitted as N2O) over the wheat cropping season, uncorrected for background emissions, ranged from 0.2 to 0.4% of total N applied for the different treatments. Highest seasonal N2O emissions were observed in the treatment with the highest irrigation intensity; however, the N2O intensity (N2O emission per crop yield) was highest in the treatment with the lowest irrigation intensity. Conclusions: Our data suggest that timing and amount of irrigation can effectively be used to reduce N2O losses from irrigated agricultural systems; however, in order to develop sustainable mitigation strategies the N2O intensity of a cropping system is an important concept that needs to be taken into account.
Resumo:
A global climate model experiment is performed to evaluate the effect of irrigation on temperatures in several major irrigated regions of the world. The Community Atmosphere Model, version 3.3, was modified to represent irrigation for the fraction of each grid cell equipped for irrigation according to datasets from the Food and Agriculture Organization. Results indicate substantial regional differences in the magnitude of irrigation-induced cooling, which are attributed to three primary factors: differences in extent of the irrigated area, differences in the simulated soil moisture for the control simulation (without irrigation), and the nature of cloud response to irrigation. The last factor appeared especially important for the dry season in India, although further analysis with other models and observations are needed to verify this feedback. Comparison with observed temperatures revealed substantially lower biases in several regions for the simulation with irrigation than for the control, suggesting that the lack of irrigation may be an important component of temperature bias in this model or that irrigation compensates for other biases. The results of this study should help to translate the results from past regional efforts, which have largely focused on the United States, to regions in the developing world that in many cases continue to experience significant expansion of irrigated land.
Resumo:
Quantifying the local crop response to irrigation is important for establishing adequate irrigation management strategies. This study evaluated the effect of irrigation applied with subsurface drip irrigation on field corn (Zea mays L.) evapotranspiration (ETc), yield, water use efficiencies (WUE = yield/ETc, and IWUE = yield/irrigation), and dry matter production in the semiarid climate of west central Nebraska. Eight treatments were imposed with irrigation amounts ranging from 53 to 356 mm in 2005 and from 22 to 226 mm in 2006. A soil water balance approach (based on FAO-56) was used to estimate daily soil water and ETc. Treatments resulted in seasonal ETc of 580-663 mm and 466-656 mm in 2005 and 2006, respectively. Yields among treatments differed by as much as 22% in 2005 and 52% in 2006. In both seasons, irrigation significantly affected yields, which increased with irrigation up to a point where irrigation became excessive. Distinct relationships were obtained each season. Yields increased linearly with seasonal ETc (R 2 = 0.89) and ETc/ETp (R 2 = 0.87) (ETp = ETc with no water stress). The yield response factor (ky), which indicates the relative reduction in yield to relative reduction in ETc, averaged 1.58 over the two seasons. WUE increased non-linearly with seasonal ETc and with yield. WUE was more sensitive to irrigation during the drier 2006 season, compared with 2005. Both seasons, IWUE decreased sharply with irrigation. Irrigation significantly affected dry matter production and partitioning into the different plant components (grain, cob, and stover). On average, the grain accounted for the majority of the above-ground plant dry mass (≈59%), followed by the stover (≈33%) and the cob (≈8%). The dry mass of the plant and that of each plant component tended to increase with seasonal ETc. The good relationships obtained in the study between crop performance indicators and seasonal ETc demonstrate that accurate estimates of ETc on a daily and seasonal basis can be valuable for making tactical in-season irrigation management decisions and for strategic irrigation planning and management.
Resumo:
Retrofitting nurseries to increase water use efficiency and evaluate 4 soil moisture sensors for irrigation scheduling.
Resumo:
A river basin that is extensively developed in the downstream reaches and that has a high potential for development in the upper reaches is considered for irrigation planning. A four-reservoir system is modeled on a monthly basis by using a mathematical programing (LP) formulation to find optimum cropping patterns, subject to land, water, and downstream release constraints. The model is applied to a fiver basin in India. Two objectives, maximizing net economic benefits and maximizing irrigated cropped area, considered in the model are analyzed in the context of multiobjective planning, and the tradeoffs are discussed.
Resumo:
Options for the integrated management of white blister (caused by Albugo candida) of Brassica crops include the use of well timed overhead irrigation, resistant cultivars, programs of weekly fungicide sprays or strategic fungicide applications based on the disease risk prediction model, Brassica(spot)(TM). Initial systematic surveys of radish producers near Melbourne, Victoria, indicated that crops irrigated overhead in the morning (0800-1200 h) had a lower incidence of white blister than those irrigated overhead in the evening (2000-2400 h). A field trial was conducted from July to November 2008 on a broccoli crop located west of Melbourne to determine the efficacy and economics of different practices used for white blister control, modifying irrigation timing, growing a resistant cultivar and timing spray applications based on Brassica(spot)(TM). Growing the resistant cultivar, 'Tyson', instead of the susceptible cultivar, 'Ironman', reduced disease incidence on broccoli heads by 99 %. Overhead irrigation at 0400 h instead of 2000 h reduced disease incidence by 58 %. A weekly spray program or a spray regime based on either of two versions of the Brassica(spot)(TM) model provided similar disease control and reduced disease incidence by 72 to 83 %. However, use of the Brassica(spot)(TM) models greatly reduced the number of sprays required for control from 14 to one or two. An economic analysis showed that growing the more resistant cultivar increased farm profit per ha by 12 %, choosing morning irrigation by 3 % and using the disease risk predictive models compared with weekly sprays by 15 %. The disease risk predictive models were 4 % more profitable than the unsprayed control.
Resumo:
This article presents the results of a study using satellite remote sensing techniques to evaluate the current status of canal system performance in terms of the spatial and temporal mismatch between water requirements and water releases within the command area The Rajolibanda Diversion Scheme(RDS)is the only operational major irrigation project in the drought prone district of Mahaboobnagar in Andra Pradesh. It is an inter-state project between Karnataka and Andra Pradesh which comprises of an anicut constructed in Karnataka in 1995 across river Thungabhdra and a 143 km long left bank main canel. The initial 42.6 km of the canel lies in Karnataka consisting of 12 distributaries and servers and serves an localised ayacut of 2739ha. In Andra Pradesh, the latter stretch of the main canal consists of distributaries 12A to 40, is localised to serve an ayacut of 35,410 ha.of which 14,215 ha during kharif season,19,332 ha, during rabi season and 1,863 ha.of perennial crops
Resumo:
Due to increasing water scarcity, accelerating industrialization and urbanization, efficiency of irrigation water use in Northern China needs urgent improvement. Based on a sample of 347 wheat growers in the Guanzhong Plain, this paper simultaneously estimates a production function, and its corresponding first-order conditions for cost minimization, to analyze efficiency of irrigation water use. The main findings are that average technical, allocative, and overall economic efficiency are 0.35, 0.86 and 0.80, respectively. In a second stage analysis, we find that farmers’ perception of water scarcity, water price and irrigation infrastructure increase irrigation water allocative efficiency, while land fragmentation decreases it. We also show that farmers’ income loss due to higher water prices can be offset by increasing irrigation water use efficiency.
Resumo:
In this paper we compare conceptualising single factor technical and allocative efficiency as indicators of a single latent variable, or as separate observed variables. In the former case, the impacts on both efficiency types are analysed by means of structural equation modeling (SEM), in the latter by seemingly unrelated regression (SUR). We compare estimation results of the two approaches based on a dataset on single factor irrigation water use efficiency obtained from a survey of 360 farmers in the Guanzhong Plain, China. The main methodological findings are that SEM allows identification of the most important dimension of irrigation water efficiency (technical efficiency) via comparison of their factor scores and reliability. Moreover, it reduces multicollinearity and attenuation bias. It thus is preferable to SUR. The SEM estimates show that perception of water scarcity is the most important positive determinant of both types of efficiency, followed by irrigation infrastructure, income and water price. Furthermore, there is a strong negative reverse effect from efficiency on perception.
Resumo:
A study was devised to evaluate influences of irrigation and fertigation practices on Vitis vinifera and Vitis labruscana grapes in the Niagara Peninsula. A modified FAO Penman- Monteith evapotranspiration formula was used to calculate water budgets and schedule irrigations. Five deficit irrigation treatments (non-irrigated control; deficits imposed postbloom, lag phase, and veraison; fiiU season irrigation) were employed in a Chardonnay vineyard. Transpiration rate (4-7 /xg H20/cmVs) and soil moisture data demonstrated that the control and early deficit treatments were under water stress throughout the season. The fiiU season irrigation treatment showed an 18% (2001) and 19% (2002) increase in yield over control due to increased berry weight. Soluble solids and wine quality were not compromised, and the fiiU season treatment showed similar or higher °Brix than all other treatments. Berry titratable acidity andpH also fell within acceptable levels for all five treatments. Irrigation/fertigation timing trials were conducted on Concord and Niagara vines in 2001- 02. The six Concord treatments consisted of a non-irrigated control, irrigation fi^om Eichhom and Lorenz (EL) stage 12 to harvest, and four fertigation treatments which applied 70 kg/ha urea. The nine Niagara treatments included a non-irrigated control, two irrigated treatments (ceasing at veraison and harvest, respectively) and six fertigation treatments of various durations. Slight yield increases (ca. 10% in Concord; 29% in Niagara) were accompanied by small decreases in soluble solids (1.5°Brix), and methyl anthranilate concentrations. Transpiration rate and soil moisture (1 1.9-16.3%) data suggested that severe water stress was present in these Toledo clay based vineyards.