987 resultados para Black-Scholes Equation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A parallel time-domain algorithm is described for the time-dependent nonlinear Black-Scholes equation, which may be used to build financial analysis tools to help traders making rapid and systematic evaluation of buy/sell contracts. The algorithm is particularly suitable for problems that do not require fine details at each intermediate time step, and hence the method applies well for the present problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we are concerned with the analysis and numerical solution of Black-Scholes type equations arising in the modeling of incomplete financial markets and an inverse problem of determining the local volatility function in a generalized Black-Scholes model from observed option prices. In the first chapter a fully nonlinear Black-Scholes equation which models transaction costs arising in option pricing is discretized by a new high order compact scheme. The compact scheme is proved to be unconditionally stable and non-oscillatory and is very efficient compared to classical schemes. Moreover, it is shown that the finite difference solution converges locally uniformly to the unique viscosity solution of the continuous equation. In the next chapter we turn to the calibration problem of computing local volatility functions from market data in a generalized Black-Scholes setting. We follow an optimal control approach in a Lagrangian framework. We show the existence of a global solution and study first- and second-order optimality conditions. Furthermore, we propose an algorithm that is based on a globalized sequential quadratic programming method and a primal-dual active set strategy, and present numerical results. In the last chapter we consider a quasilinear parabolic equation with quadratic gradient terms, which arises in the modeling of an optimal portfolio in incomplete markets. The existence of weak solutions is shown by considering a sequence of approximate solutions. The main difficulty of the proof is to infer the strong convergence of the sequence. Furthermore, we prove the uniqueness of weak solutions under a smallness condition on the derivatives of the covariance matrices with respect to the solution, but without additional regularity assumptions on the solution. The results are illustrated by a numerical example.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we are going to evaluate the different assumptions used in the Black- Scholes-Merton pricing model, namely log-normality of returns, continuous interest rates, inexistence of dividends and transaction costs, and the consequences of using them to hedge different options in real markets, where they often fail to verify. We are going to conduct a series of tests in simulated underlying price series, where alternatively each assumption will be violated and every option delta hedging profit and loss analysed. Ultimately we will monitor how the aggressiveness of an option payoff causes its hedging to be more vulnerable to profit and loss variations, caused by the referred assumptions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho cuida de avaliar a eficiência do mercado de opções de ações da bolsa de valores de são Paulo (BOVESPA). A avaliação é feita através do modelo Black-Scholes, e traz como principal novidade diversas estimativas de volatilidade. Portanto torna-se um teste conjunto da eficiência do mercado, do modelo Black-Scholes e das diversas estimativas de volatilidade. O objetivo principal ~ determinar a volatilidade que gera o melhor retorno , isto é , aponta a maior ineficiência do mercado. Foram utilizadas opções de Paranapanema-pp e Petrobr's-pp no per(odo de novembro de 1987 a outubro de 1988. Dois testes de eficiência foram realizados para cada volatilidade estimada . Em ambos observou-se que o mercado é ineficiente, e no segundo obtivemos evidência de que uma das estimativas de volatilidade gera um retorno maio

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Financial modelling in the area of option pricing involves the understanding of the correlations between asset and movements of buy/sell in order to reduce risk in investment. Such activities depend on financial analysis tools being available to the trader with which he can make rapid and systematic evaluation of buy/sell contracts. In turn, analysis tools rely on fast numerical algorithms for the solution of financial mathematical models. There are many different financial activities apart from shares buy/sell activities. The main aim of this chapter is to discuss a distributed algorithm for the numerical solution of a European option. Both linear and non-linear cases are considered. The algorithm is based on the concept of the Laplace transform and its numerical inverse. The scalability of the algorithm is examined. Numerical tests are used to demonstrate the effectiveness of the algorithm for financial analysis. Time dependent functions for volatility and interest rates are also discussed. Applications of the algorithm to non-linear Black-Scholes equation where the volatility and the interest rate are functions of the option value are included. Some qualitative results of the convergence behaviour of the algorithm is examined. This chapter also examines the various computational issues of the Laplace transformation method in terms of distributed computing. The idea of using a two-level temporal mesh in order to achieve distributed computation along the temporal axis is introduced. Finally, the chapter ends with some conclusions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exam and solutions in LaTex

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exercises and solutions in LaTex

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exercises and solutions in PDF

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exam questions and solutions in PDF

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exam questions and solutions in LaTex

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exercises and solutions in PDF

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 65M06, 65M12.