898 resultados para Black leg


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The monograph presents results of deep-sea drilling in the Black Sea carried out in 1975. Detailed lithological, biostratigraphic and geochemical studies of Miocene-Holocene sediments have been carried out by specialists from institutes of the USSR Academy of Sciences, Moscow State University and other organizations. Drilling results are compared with geophysical data. Geological history of the Black Sea basin is considered as well.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Subseafloor sediments harbor over half of all prokaryotic cells on Earth (Whitman et al., 1998). This immense number is calculated from numerous microscopic acridine orange direct counts (AODCs) conducted on sediment cores drilled during the Ocean Drilling Program (ODP) (Parkes et al., 1994, doi:10.1038/371410a0, 2000, doi:10.1007/PL00010971). Because these counts cannot differentiate between living and inactive or even dead cells (Kepner and Pratt, 1994; Morita, 1997), the population size of living microorganisms has recently been enumerated for ODP Leg 201 sediment samples from the equatorial Pacific and the Peru margin using ribosomal ribonucleic acid targeting catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) (Schippers et al., 2005, doi:10.1038/nature03302). A large fraction of the subseafloor prokaryotes were alive, even in very old (16 Ma) and deep (>400 m) sediments. In this study, black shale samples from the Demerara Rise (Erbacher, Mosher, Malone, et al., 2004, doi:10.2973/odp.proc.ir.207.2004) were analyzed using AODC and CARD-FISH to find out if black shales also harbor microorganisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Cenozoic sediments sampled in ODP Leg 104 on the Vøring Plateau show a distinct variability of the total organic carbon content (TOC) and the accumulation rates of TOC. Based on the geochemical and organic-petrographic characterization of the sedimentary organic matter (OM), the allochthonous and autochthonous proportion of the OM could be quantified. The results clearly demonstrate that high TOC percentages and TOC accumulation rates in Cenozoic sediment sections display a generally high input of allochthonous organic matter. Oxidized and partly well-rounded organic particles built up the main portion of OM within the Miocene, TOC-rich sediments. The most probable source of this oxidized OM are reworked sediments from the Scandinavian shelf. Changes in the input of these organic particles are to some degree correlative with sea-level changes. The Cenozoic accumulation of autochthonous OM is low and does not reveal a clear variation during the Miocene and early Pliocene. In spite of a high accumulation rate of biogenic opal during the Early Miocene, the accumulation rate of autochthonous TOC is low. The autochthonous particle assemblage is dominated by relatively inert OM, like dinoflagellate cysts. This points to an intensive biological and/or early diagenetic degradation of the marine OM under well oxidized bottom water conditions during the last 23 Myr. Nevertheless, a continuation of marine OM degradation during later stages of diagenesis cannot be excluded. A prominent dominance of allochthonous OM over autochthonous is documented with the beginning of the Pliocene. At 2.45 Ma the episodic occurrence of ice-rafted, thermally mature OM reflects the onset of the glacial erosion of Mesozoic, coal and black shale bearing sediments on the Scandinavian and Barents Sea shelves. The first occurrence of these, in view of the actual burial depth, thermally overmature OM particles is, therefore, a marker for the beginning of the strong Scandinavian glaciation and the advance of the glacial front toward the shelves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five of the six sites drilled during Leg 77 of the Deep Sea Drilling Project yielded Cretaceous sediments. Two of these sites, 535 and 540, form a composite section that spans the upper Berriasian through most of the Cenomanian. Olive black marly limestones in this interval yield relatively rich, well-preserved nannofossil assemblages that allow biostratigraphic subdivision of the sequence. This composite section provides important information on the Early Cretaceous history of the Gulf of Mexico, as well as additional information on tropical Lower Cretaceous nannofossil assemblages. The post-Cenomanian nannofossil (and sedimentary) record is limited to a thin, condensed section of Santonian through lower Maestrichtian pelagic sediments at one site (538) and is absent or represented by redeposited material at the other sites. Two new genera, Perchnielsenella and Darwinilithus, are described. Two new taxa, Darwinilithus pentarhethum and Lithraphidites acutum ssp. eccentricum, are described; and two new combinations, Rhagodiscus reightonensis and Perchnielsenella stradneri, are propose.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The black shale encountered in Cretaceous cores of the Cape Verde area during the DSDP Leg 41 are of marine origin and correspond to excellent potential oil source rocks. They have a low content of humic compounds. Pyrolysis assays, chloroformic extracts, and kerogen data attest to a relatively low stage of evolution for samples at Site 367 (Cape Verde Basin). The samples from Site 368 (Cape Verde Rise) are more evolved, and the deeper ones would be located at the beginning of the principal zone of oil formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quaternary sedimentation within the Japan Sea was controlled by the configuration of peripheral sills, seasonal and long-term climatic variability, and the resultant fluctuations in sea level (Tamaki, 1988). Prior to drilling in the area, piston cores recovered from its basins contained Pleistocene sediments having distinctive color and fabric variation. Sedimentological and geochemical studies conducted on those facies indicated that the variability in fabric was the result of fluctuating marine and/or terrigenous influx to the deep-water basins of the Japan Sea (see, for example, Chough, 1984; Matoba, 1984). The sequences recovered during Leg 127 at Sites 794, 795, and 797 contain long, virtually undisturbed sequences (92.3, 123, and 119.9 mbsf [Hole 797B], respectively) of upper Miocene, upper Pliocene, and Pleistocene/Holocene sediments. The majority of these sequences consists of dark-colored (dark brown, green, and black) silty-clays, many of which are enriched in biogenic components (majority silicious, some carbonate) and/or organic matter, some containing pyrite and/or ash. These facies alternate with light-colored silty-clays, some containing ash and some showing signs of bioturbation (for example, Tamaki, Pisciotto, Allan, et al., 1990, p. 425-433). The dark-to-light sequences are present throughout the section, although they are especially dominant throughout the Pleistocene (for a more detailed lithology of Quaternary sequences recovered at Sites 794, 795, and 797, see Follmi et al. 1992 and Tada et al., 1992). This data report provides trace metal information on Pliocene-Pleistocene-Holocene samples at Sites 794,795, and 797. These data can be used (1) to provide information related to the depositional environments of the Japan Sea during the Quaternary period, (2) to permit comparisons between the dark organic-rich sediments recovered from this semi-enclosed basin and those reported for other silled basins (for example, the Mediterranean and Black seas), and (3) to permit comparisons between these sediments and contemporary equivalents found, for instance, beneath areas of high biogenic productivity. By providing such data, one should be able (1) to determine more precisely the processes governing the deposition of sediments with various levels of organic matter within enclosed basins, (2) to compare individual basin-wide processes, (3) to look for and compare the signatures present as a result of climatic fluctuation, and (4) to attempt to identify the presence and/or absence of cyclicity within such sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five-hundred ten meters of Cretaceous sediments were drilled north of the Walvis escarpment in Hole 530A during Leg 75. An immature stage of evolution for organic matter can be assigned to all the samples studied. Black shales are interbedded with red and green claystone in the bottom sedimentary unit, Unit 8, which is of Coniacian to late Albian age. The richest organic carbon contents and petroleum potentials occur in the black shales. Detrital organic matter is present throughout the various members of a sequence, mixed with largely oxidized organic matter in the gray and green claystone or marlstone members on both sides. Detrital organic matter also characterizes the black streaks observed in the claystones. Vertical discontinuities in organic matter distribution are assigned to slumping. Several types of black shales can be identified, according to their content of detrital organic matter, the more detrital black levels corresponding to the Albian-Cenomanian period. Cyclic variations of organic matter observed for a sequence can occur for a set of sequences and even for some consecutive sets of sequences. Climatic factors are proposed to account for the cyclic sedimentation and distribution of organic matter for every sequence that includes a black bed.