936 resultados para Black holes in HL gravity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questo lavoro viene presentato un recente modello di buco nero che implementa le proprietà quantistiche di quelle regioni dello spaziotempo dove non possono essere ignorate, pena l'implicazione di paradossi concettuali e fenomenologici. In suddetto modello, la regione di spaziotempo dominata da comportamenti quantistici si estende oltre l'orizzonte del buco nero e suscita un'inversione, o più precisamente un effetto tunnel, della traiettoria di collasso della stella in una traiettoria di espansione simmetrica nel tempo. L'inversione impiega un tempo molto lungo per chi assiste al fenomeno a grandi distanze, ma inferiore al tempo di evaporazione del buco nero tramite radiazione di Hawking, trascurata e considerata come un effetto dissipativo da studiarsi in un secondo tempo. Il resto dello spaziotempo, fuori dalla regione quantistica, soddisfa le equazioni di Einstein. Successivamente viene presentata la teoria della Gravità Quantistica a Loop (LQG) che permetterebbe di studiare la dinamica della regione quantistica senza far riferimento a una metrica classica, ma facendo leva sul contenuto relazionale del tessuto spaziotemporale. Il campo gravitazionale viene riformulato in termini di variabili hamiltoniane in uno spazio delle fasi vincolato e con simmetria di gauge, successivamente promosse a operatori su uno spazio di Hilbert legato a una vantaggiosa discretizzazione dello spaziotempo. La teoria permette la definizione di un'ampiezza di transizione fra stati quantistici di geometria spaziotemporale, applicabile allo studio della regione quantistica nel modello di buco nero proposto. Infine vengono poste le basi per un calcolo in LQG dell'ampiezza di transizione del fenomeno di rimbalzo quantistico all'interno del buco nero, e di conseguenza per un calcolo quantistico del tempo di rimbalzo nel riferimento di osservatori statici a grande distanza da esso, utile per trattare a posteriori un modello che tenga conto della radiazione di Hawking e, auspicatamente, fornisca una possibile risoluzione dei problemi legati alla sua esistenza.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Part I, we construct a symmetric stress-energy-momentum pseudo-tensor for the gravitational fields of Brans-Dicke theory, and use this to establish rigorously conserved integral expressions for energy-momentum Pi and angular momentum Jik. Application of the two-dimensional surface integrals to the exact static spherical vacuum solution of Brans leads to an identification of our conserved mass with the active gravitational mass. Application to the distant fields of an arbitrary stationary source reveals that Pi and Jik have the same physical interpretation as in general relativity. For gravitational waves whose wavelength is small on the scale of the background radius of curvature, averaging over several wavelengths in the Brill-Hartle-Isaacson manner produces a stress-energy-momentum tensor for gravitational radiation which may be used to calculate the changes in Pi and Jik of their source.

In Part II, we develop strong evidence in favor of a conjecture by Penrose--that, in the Brans-Dicke theory, relativistic gravitational collapse in three dimensions produce black holes identical to those of general relativity. After pointing out that any black hole solution of general relativity also satisfies Brans-Dicke theory, we establish the Schwarzschild and Kerr geometries as the only possible spherical and axially symmetric black hole exteriors, respectively. Also, we show that a Schwarzschild geometry is necessarily formed in the collapse of an uncharged sphere.

Appendices discuss relationships among relativistic gravity theories and an example of a theory in which black holes do not exist.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis Entitled Studies on Quasinormal modes and Late-time tails black hole spacetimes. In this thesis, the signature of these new theories are probed on the evolution of field perturbations on the black hole spacetimes in the theory. Chapter 1 gives a general introduction to black holes and its perturbation formalism. Various concepts in the area covered by the thesis are also elucidated in this chapter. Chapter 2 describes the evolution of massive, charged scalar field perturbations around a Reissner-Nordstrom black hole surrounded by a static and spherically symmetric quintessence. Chapter 3 comprises the evolution of massless scalar, electromagnetic and gravitational fields around spherically symmetric black hole whose asymptotes are defined by the quintessence, with special interest on the late-time behavior. Chapter 4 examines the evolution of Dirac field around a Schwarzschild black hole surrounded by quintessence. Detailed numerical simulations are done to analyze the nature of field on different surfaces of constant radius . Chapter 5is dedicated to the study of the evolution of massless fields around the black hole geometry in the HL gravity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the interesting consequences of Einstein's General Theory of Relativity is the black hole solutions. Until the observation made by Hawking in 1970s, it was believed that black holes are perfectly black. The General Theory of Relativity says that black holes are objects which absorb both matter and radiation crossing the event horizon. The event horizon is a surface through which even light is not able to escape. It acts as a one sided membrane that allows the passage of particles only in one direction i.e. towards the center of black holes. All the particles that are absorbed by black hole increases the mass of the black hole and thus the size of event horizon also increases. Hawking showed in 1970s that when applying quantum mechanical laws to black holes they are not perfectly black but they can emit radiation. Thus the black hole can have temperature known as Hawking temperature. In the thesis we have studied some aspects of black holes in f(R) theory of gravity and Einstein's General Theory of Relativity. The scattering of scalar field in this background space time studied in the first chapter shows that the extended black hole will scatter scalar waves and have a scattering cross section and applying tunneling mechanism we have obtained the Hawking temperature of this black hole. In the following chapter we have investigated the quasinormal properties of the extended black hole. We have studied the electromagnetic and scalar perturbations in this space-time and find that the black hole frequencies are complex and show exponential damping indicating the black hole is stable against the perturbations. In the present study we show that not only the black holes exist in modified gravities but also they have similar properties of black hole space times in General Theory of Relativity. 2 + 1 black holes or three dimensional black holes are simplified examples of more complicated four dimensional black holes. Thus these models of black holes are known as toy models of black holes in four dimensional black holes in General theory of Relativity. We have studied some properties of these types of black holes in Einstein model (General Theory of Relativity). A three dimensional black hole known as MSW is taken for our study. The thermodynamics and spectroscopy of MSW black hole are studied and obtained the area spectrum which is equispaced and different thermo dynamical properties are studied. The Dirac perturbation of this three dimensional black hole is studied and the resulting quasinormal spectrum of this three dimensional black hole is obtained. The different quasinormal frequencies are tabulated in tables and these values show an exponential damping of oscillations indicating the black hole is stable against the mass less Dirac perturbation. In General Theory of Relativity almost all solutions contain singularities. The cosmological solution and different black hole solutions of Einstein's field equation contain singularities. The regular black hole solutions are those which are solutions of Einstein's equation and have no singularity at the origin. These solutions possess event horizon but have no central singularity. Such a solution was first put forward by Bardeen. Hayward proposed a similar regular black hole solution. We have studied the thermodynamics and spectroscopy of Hay-ward regular black holes. We have also obtained the different thermodynamic properties and the area spectrum. The area spectrum is a function of the horizon radius. The entropy-heat capacity curve has a discontinuity at some value of entropy showing a phase transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine the thermodynamic properties of recently constructed black hole solutions in SL(3, R) x SL(3, R) Chern-Simons theory in the presence of a chemical potential for spin-3 charge, which acts as an irrelevant deformation of the dual CFT with W-3 X W-3 symmetry. The smoothness or holonomy conditions admit four branches of solutions describing a flow between two AdS(3) backgrounds corresponding to two different CFTs. The dominant branch at low temperatures, connected to the BTZ black hole, merges smoothly with a thermodynamically unstable branch and disappears at higher temperatures. We confirm that the UV region of the flow satisfies the Ward identities of a CFT with W-3((2)) x W-3((2)) symmetry deformed by a spin-3/2 current. This allows to identify the precise map between UV and HI thermodynamic variables. We find that the high temperature regime is dominated by a black hole branch whose thermodynamics can only be consistently inferred with reference to this W-3((2)) x W-3((2)) CFT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study black hole solutions in Chern-Simons higher spin supergravity based on the superalgebra sl(3 vertical bar 2). These black hole solutions have a U(1) gauge field and a spin 2 hair in addition to the spin 3 hair. These additional fields correspond to the R-symmetry charges of the supergroup sl(3 vertical bar 2). Using the relation between the bulk field equations and the Ward identities of a CFT with N = 2 super-W-3 symmetry, we identify the bulk charges and chemical potentials with those of the boundary CFT. From these identifications we see that a suitable set of variables to study this black hole is in terms of the charges present in three decoupled bosonic sub-algebras of the N = 2 super-W-3 algebra. The entropy and the partition function of these R-charged black holes are then evaluated in terms of the charges of the bulk theory as well as in terms of its chemical potentials. We then compute the partition function in the dual CFT and find exact agreement with the bulk partition function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis consists of three separate studies of roles that black holes might play in our universe.

In the first part we formulate a statistical method for inferring the cosmological parameters of our universe from LIGO/VIRGO measurements of the gravitational waves produced by coalescing black-hole/neutron-star binaries. This method is based on the cosmological distance-redshift relation, with "luminosity distances" determined directly, and redshifts indirectly, from the gravitational waveforms. Using the current estimates of binary coalescence rates and projected "advanced" LIGO noise spectra, we conclude that by our method the Hubble constant should be measurable to within an error of a few percent. The errors for the mean density of the universe and the cosmological constant will depend strongly on the size of the universe, varying from about 10% for a "small" universe up to and beyond 100% for a "large" universe. We further study the effects of random gravitational lensing and find that it may strongly impair the determination of the cosmological constant.

In the second part of this thesis we disprove a conjecture that black holes cannot form in an early, inflationary era of our universe, because of a quantum-field-theory induced instability of the black-hole horizon. This instability was supposed to arise from the difference in temperatures of any black-hole horizon and the inflationary cosmological horizon; it was thought that this temperature difference would make every quantum state that is regular at the cosmological horizon be singular at the black-hole horizon. We disprove this conjecture by explicitly constructing a quantum vacuum state that is everywhere regular for a massless scalar field. We further show that this quantum state has all the nice thermal properties that one has come to expect of "good" vacuum states, both at the black-hole horizon and at the cosmological horizon.

In the third part of the thesis we study the evolution and implications of a hypothetical primordial black hole that might have found its way into the center of the Sun or any other solar-type star. As a foundation for our analysis, we generalize the mixing-length theory of convection to an optically thick, spherically symmetric accretion flow (and find in passing that the radial stretching of the inflowing fluid elements leads to a modification of the standard Schwarzschild criterion for convection). When the accretion is that of solar matter onto the primordial hole, the rotation of the Sun causes centrifugal hangup of the inflow near the hole, resulting in an "accretion torus" which produces an enhanced outflow of heat. We find, however, that the turbulent viscosity, which accompanies the convective transport of this heat, extracts angular momentum from the inflowing gas, thereby buffering the torus into a lower luminosity than one might have expected. As a result, the solar surface will not be influenced noticeably by the torus's luminosity until at most three days before the Sun is finally devoured by the black hole. As a simple consequence, accretion onto a black hole inside the Sun cannot be an answer to the solar neutrino puzzle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we extend previous work on the evolution of a primordial black hole (PBH) to address the presence of a dark energy component with a super-negative equation of state as a background, investigating the competition between the radiation accretion, the Hawking evaporation and the phantom accretion, the latter two causing a decrease on black hole mass. It is found that there is an instant during the matter-dominated era after which the radiation accretion becomes negligible compared to the phantom accretion. The Hawking evaporation may become important again depending on a mass threshold. The evaporation of PBHs is quite modified at late times by these effects, but only if the generalized second law of thermodynamics is violated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the optical paths of the light rays propagating inside a nonlinear moving dielectric medium. For rapidly moving dielectrics we show the existence of a distinguished surface which resembles, as far as the light propagation is concerned, the event horizon of a black hole. Our analysis clarifies the physical conditions under which electromagnetic analogues of gravitational black holes can eventually be obtained in laboratory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A search for microscopic black holes in pp collisions at a center-of-mass energy of 7TeV is presented. The data sample corresponds to an integrated luminosity of 4.7 fb1 recorded by the CMS experiment at the LHC in 2011. Events with large total transverse energy have been analyzed for the presence of multiple energetic jets, leptons, and photons, which are typical signals of evaporating semiclassical and quantum black holes, and string balls. Agreement with the expected standard model backgrounds, which are dominated by QCD multijet production, has been observed for various combined multiplicities of jets and other reconstructed objects in the final state. Model-independent limits are set on new physics processes producing high-multiplicity, energetic final states. In addition, new model-specific indicative limits are set excluding semiclassical and quantum black holes with masses below 3.8 to 5.3TeV and string balls with masses below 4.6 to 4.8TeV . The analysis has a substantially increased sensitivity compared to previous searches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A realistic model describing a black string-like object in an expanding Universe is analyzed in the context of the McVittie's solution of the Einstein field equations. The bulk metric near the brane is provided analogously to previous solutions for black strings. In particular, we show that at least when the Hubble parameter on the brane is positive, a black string-like object seems to play a fundamental role in the braneworld scenario, generalizing the standard black strings in the context of a dynamical brane. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A search for microscopic black holes and string balls is presented, based on a data sample of pp collisions at √s=8 TeV recorded by the CMS experiment at the Large Hadron Collider and corresponding to an integrated luminosity of 12 fb-1. No excess of events with energetic multiparticle final states, typical of black hole production or of similar new physics processes, is observed. Given the agreement of the observations with the expected standard model background, which is dominated by QCD multijet production, 95% confidence level limits are set on the production of semiclassical or quantum black holes, or of string balls, corresponding to the exclusions of masses below 4.3 to 6.2 TeV, depending on model assumptions. In addition, model-independent limits are set on new physics processes resulting in energetic multiparticle final states. [Figure not available: see fulltext.] © 2013 CERN for the benefit of the CMS collaboration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report results from a search for gravitational waves produced by perturbed intermediate mass black holes ( IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to astrophysical sources that produced damped sinusoid gravitational wave signals, also known as ringdowns, with frequency 50 <= f(0)/Hz <= 2000 and decay timescale 0.0001 less than or similar to tau/s less than or similar to 0.1 characteristic of those produced in mergers of IMBH pairs. No significant gravitational wave candidate was detected. We report upper limits on the astrophysical coalescence rates of IMBHs with total binary mass 50 <= M/ M circle dot <= 450 and component mass ratios of either 1: 1 or 4: 1. For systems with total mass 100 <= M/M circle dot <= 150, we report a 90% confidence upper limit on the rate of binary IMBH mergers with nonspinning and equal mass components of 6.9 x 10(-8) Mpc(-3) yr(-1). We also report a rate upper limit for ringdown waveforms from perturbed IMBHs, radiating 1% of their mass as gravitational waves in the fundamental, l = m = 2, oscillation mode, that is nearly three orders of magnitude more stringent than previous results.