977 resultados para Black Litterman Model
Resumo:
O modelo Black-Litterman calcula os retornos esperados de mercado como uma combinação de um conjunto de expectativas específicas de cada investidor e um ponto de referência neutro. A combinação dessas duas fontes de informações são feitas pelo modelo utilizando a abordagem bayesiana. Os resultados obtidos a partir do modelo Black-Litterman, ao contrário da abordagem tradicional, são bastante intuitivos, estáveis e consistentes em relação as expectativas dos investidores. O objetivo dessa dissertação é fazer uma análise detalhada de cada um dos componentes do modelo Black-Litterman e verificar se a utilização o modelo de Black-Litterman, introduzindo as opiniões de mercado com base no relatório FOCUS do Banco Central, supera o retorno dos fundos multimercados brasileiros.
Resumo:
This paper discusses preconditioned Krylov subspace methods for solving large scale linear systems that originate from oil reservoir numerical simulations. Two types of preconditioners, one being based on an incomplete LU decomposition and the other being based on iterative algorithms, are used together in a combination strategy in order to achieve an adaptive and efficient preconditioner. Numerical tests show that different Krylov subspace methods combining with appropriate preconditioners are able to achieve optimal performance.
Resumo:
Dentro de las diversas teorías financieras que se enfocan en la asignación óptima de recursos en un portafolio de inversión, la propuesta de Black-Litterman es la única que incorpora las expectativas futuras que tienen los inversionistas sobre los activos en los cuales destinarán sus recursos. En este trabajo se presenta la propuesta de Black-Litterman como una herramienta para mejorar la selección óptima de portafolios y como un insumo que mejora la estructuración de portafolios a través del modelo clásico propuesto por Markowitz. Además de la presentación teórica del modelo de Black-Litterman, se realiza un análisis de caso estructurando un portafolio óptimo sobre el índice COLCAP del mercado de valores colombiano, los resultados muestran que además de permitir incorporar las visiones de los inversionistas, los resultados obtenidos mediante Black-Litterman ayudan a crear mejores portafolios de inversión a través del modelo de Markowitz, tanto en maximización de rendimientos como de minimización de varianza.
Resumo:
Behavioral finance, or behavioral economics, consists of a theoretical field of research stating that consequent psychological and behavioral variables are involved in financial activities such as corporate finance and investment decisions (i.e. asset allocation, portfolio management and so on). This field has known an increasing interest from scholar and financial professionals since episodes of multiple speculative bubbles and financial crises. Indeed, practical incoherencies between economic events and traditional neoclassical financial theories had pushed more and more researchers to look for new and broader models and theories. The purpose of this work is to present the field of research, still ill-known by a vast majority. This work is thus a survey that introduces its origins and its main theories, while contrasting them with traditional finance theories still predominant nowadays. The main question guiding this work would be to see if this area of inquiry is able to provide better explanations for real life market phenomenon. For that purpose, the study will present some market anomalies unsolved by traditional theories, which have been recently addressed by behavioral finance researchers. In addition, it presents a practical application of portfolio management, comparing asset allocation under the traditional Markowitz’s approach to the Black-Litterman model, which incorporates some features of behavioral finance.
Resumo:
Este trabalho tem com objetivo abordar o problema de alocação de ativos (análise de portfólio) sob uma ótica Bayesiana. Para isto foi necessário revisar toda a análise teórica do modelo clássico de média-variância e na sequencia identificar suas deficiências que comprometem sua eficácia em casos reais. Curiosamente, sua maior deficiência não esta relacionado com o próprio modelo e sim pelos seus dados de entrada em especial ao retorno esperado calculado com dados históricos. Para superar esta deficiência a abordagem Bayesiana (modelo de Black-Litterman) trata o retorno esperado como uma variável aleatória e na sequência constrói uma distribuição a priori (baseado no modelo de CAPM) e uma distribuição de verossimilhança (baseado na visão de mercado sob a ótica do investidor) para finalmente aplicar o teorema de Bayes tendo como resultado a distribuição a posteriori. O novo valor esperado do retorno, que emerge da distribuição a posteriori, é que substituirá a estimativa anterior do retorno esperado calculado com dados históricos. Os resultados obtidos mostraram que o modelo Bayesiano apresenta resultados conservadores e intuitivos em relação ao modelo clássico de média-variância.
Resumo:
This paper presents a scalable, statistical ‘black-box’ model for predicting the performance of parallel programs on multi-core non-uniform memory access (NUMA) systems. We derive a model with low overhead, by reducing data collection and model training time. The model can accurately predict the behaviour of parallel applications in response to changes in their concurrency, thread layout on NUMA nodes, and core voltage and frequency. We present a framework that applies the model to achieve significant energy and energy-delay-square (ED2) savings (9% and 25%, respectively) along with performance improvement (10% mean) on an actual 16-core NUMA system running realistic application workloads. Our prediction model proves substantially more accurate than previous efforts.
Resumo:
This paper uses a novel numerical optimization technique - robust optimization - that is well suited to solving the asset-liability management (ALM) problem for pension schemes. It requires the estimation of fewer stochastic parameters, reduces estimation risk and adopts a prudent approach to asset allocation. This study is the first to apply it to a real-world pension scheme, and the first ALM model of a pension scheme to maximise the Sharpe ratio. We disaggregate pension liabilities into three components - active members, deferred members and pensioners, and transform the optimal asset allocation into the scheme’s projected contribution rate. The robust optimization model is extended to include liabilities and used to derive optimal investment policies for the Universities Superannuation Scheme (USS), benchmarked against the Sharpe and Tint, Bayes-Stein, and Black-Litterman models as well as the actual USS investment decisions. Over a 144 month out-of-sample period robust optimization is superior to the four benchmarks across 20 performance criteria, and has a remarkably stable asset allocation – essentially fix-mix. These conclusions are supported by six robustness checks.
Resumo:
This thesis examines three different, but related problems in the broad area of portfolio management for long-term institutional investors, and focuses mainly on the case of pension funds. The first idea (Chapter 3) is the application of a novel numerical technique – robust optimization – to a real-world pension scheme (the Universities Superannuation Scheme, USS) for first time. The corresponding empirical results are supported by many robustness checks and several benchmarks such as the Bayes-Stein and Black-Litterman models that are also applied for first time in a pension ALM framework, the Sharpe and Tint model and the actual USS asset allocations. The second idea presented in Chapter 4 is the investigation of whether the selection of the portfolio construction strategy matters in the SRI industry, an issue of great importance for long term investors. This study applies a variety of optimal and naïve portfolio diversification techniques to the same SRI-screened universe, and gives some answers to the question of which portfolio strategies tend to create superior SRI portfolios. Finally, the third idea (Chapter 5) compares the performance of a real-world pension scheme (USS) before and after the recent major changes in the pension rules under different dynamic asset allocation strategies and the fixed-mix portfolio approach and quantifies the redistributive effects between various stakeholders. Although this study deals with a specific pension scheme, the methodology can be applied by other major pension schemes in countries such as the UK and USA that have changed their rules.
Resumo:
In this work we are concerned with the analysis and numerical solution of Black-Scholes type equations arising in the modeling of incomplete financial markets and an inverse problem of determining the local volatility function in a generalized Black-Scholes model from observed option prices. In the first chapter a fully nonlinear Black-Scholes equation which models transaction costs arising in option pricing is discretized by a new high order compact scheme. The compact scheme is proved to be unconditionally stable and non-oscillatory and is very efficient compared to classical schemes. Moreover, it is shown that the finite difference solution converges locally uniformly to the unique viscosity solution of the continuous equation. In the next chapter we turn to the calibration problem of computing local volatility functions from market data in a generalized Black-Scholes setting. We follow an optimal control approach in a Lagrangian framework. We show the existence of a global solution and study first- and second-order optimality conditions. Furthermore, we propose an algorithm that is based on a globalized sequential quadratic programming method and a primal-dual active set strategy, and present numerical results. In the last chapter we consider a quasilinear parabolic equation with quadratic gradient terms, which arises in the modeling of an optimal portfolio in incomplete markets. The existence of weak solutions is shown by considering a sequence of approximate solutions. The main difficulty of the proof is to infer the strong convergence of the sequence. Furthermore, we prove the uniqueness of weak solutions under a smallness condition on the derivatives of the covariance matrices with respect to the solution, but without additional regularity assumptions on the solution. The results are illustrated by a numerical example.
Resumo:
Le scelte di asset allocation costituiscono un problema ricorrente per ogni investitore. Quest’ultimo è continuamente impegnato a combinare diverse asset class per giungere ad un investimento coerente con le proprie preferenze. L’esigenza di supportare gli asset manager nello svolgimento delle proprie mansioni ha alimentato nel tempo una vasta letteratura che ha proposto numerose strategie e modelli di portfolio construction. Questa tesi tenta di fornire una rassegna di alcuni modelli innovativi di previsione e di alcune strategie nell’ambito dell’asset allocation tattica, per poi valutarne i risvolti pratici. In primis verificheremo la sussistenza di eventuali relazioni tra la dinamica di alcune variabili macroeconomiche ed i mercati finanziari. Lo scopo è quello di individuare un modello econometrico capace di orientare le strategie dei gestori nella costruzione dei propri portafogli di investimento. L’analisi prende in considerazione il mercato americano, durante un periodo caratterizzato da rapide trasformazioni economiche e da un’elevata volatilità dei prezzi azionari. In secondo luogo verrà esaminata la validità delle strategie di trading momentum e contrarian nei mercati futures, in particolare quelli dell’Eurozona, che ben si prestano all’implementazione delle stesse, grazie all’assenza di vincoli sulle operazioni di shorting ed ai ridotti costi di transazione. Dall’indagine emerge che entrambe le anomalie si presentano con carattere di stabilità. I rendimenti anomali permangono anche qualora vengano utilizzati i tradizionali modelli di asset pricing, quali il CAPM, il modello di Fama e French e quello di Carhart. Infine, utilizzando l’approccio EGARCH-M, verranno formulate previsioni sulla volatilità dei rendimenti dei titoli appartenenti al Dow Jones. Quest’ultime saranno poi utilizzate come input per determinare le views da inserire nel modello di Black e Litterman. I risultati ottenuti, evidenziano, per diversi valori dello scalare tau, extra rendimenti medi del new combined vector superiori al vettore degli extra rendimenti di equilibrio di mercato, seppur con livelli più elevati di rischio.
Resumo:
In this paper, we investigate the suitability of the grand canonical Monte Carlo in the description of adsorption equilibria of flexible n-alkane (butane, pentane and hexane) on graphitized thermal carbon black. Potential model of n-alkane of Martin and Siepmann (J. Phys. Chem. 102 (1998) 2569) is employed in the simulation, and we consider the flexibility of molecule in the simulation. By this we study two models, one is the fully flexible molecular model in which n-alkane is subject to bending and torsion, while the other is the rigid molecular model in which all carbon atoms reside on the same plane. It is found that (i) the adsorption isotherm results of these two models are close to each other, suggesting that n-alkane model behaves mostly as rigid molecules with respect to adsorption although the isotherm for longer chain n-hexane is better described by the flexible molecular model (ii) the isotherms agree very well with the experimental data at least up to two layers on the surface.
Resumo:
In this paper, we examine the predictability of observed volatility smiles in three major European index options markets, utilising the historical return distributions of the respective underlying assets. The analysis involves an application of the Black (1976) pricing model adjusted in accordance with the Jarrow-Rudd methodology as proposed in 1982. Thereby we adjust the expected future returns for the third and fourth central moments as these represent deviations from normality in the distributions of observed returns. Thus, they are considered one possible explanation to the existence of the smile. The obtained results indicate that the inclusion of the higher moments in the pricing model to some extent reduces the volatility smile, compared with the unadjusted Black-76 model. However, as the smile is partly a function of supply, demand, and liquidity, and as such intricate to model, this modification does not appear sufficient to fully capture the characteristics of the smile.
Resumo:
Signal transduction pathways describe the dynamics of cellular response to input signalling molecules at receptors on the cell membrane. The Mitogen-Activated Protein Kinase (MAPK) cascade is one of such pathways that are involved in many important cellular processes including cell growth and proliferation. This paper describes a black-box model of this pathway created using an advanced two-stage identification algorithm. Identification allows us to capture the unique features and dynamics of the pathway and also opens up the possibility of regulatory control design. In the approach described, an optimal model is obtained by performing model subset selection in two stages, where the terms are first determined by a forward selection method and then modified using a backward selection model refinement. The simulation results demonstrate that the model selected using the two-stage algorithm performs better than with the forward selection method alone.