959 resultados para Bismuth germanate glasses
Resumo:
Bismuth germanate glasses are interesting materials due to their physical properties and their unique structural characteristics caused by the coordination changes of bismuth and germanium atoms. Glasses of the bismuth germanate system were prepared by melting/molding method and were investigated concerning their thermal and structural properties. The structural analysis of the samples was carried out by micro-Raman and Fourier transform infrared spectroscopes. It was observed that the glass structure is formed basically by GeO(4) tetrahedral units also having the formation of the GeO(6) octahedral units. BiO(2) was considered a network former by observing the presence of octahedral BiO(6) and pyramidal BiO(3) groups in the local structure of the samples. An absorption band observed at 1103 cm(-1) in the IR spectrum of the undoped glass was attributed to the Bi-O-Ge and/or Bi-O-Bi linkage vibration. The said band shifted to lower wavenumbers after the CeO(2) addition thus reflecting changes in the glass network. Cerium oxide was an efficient oxidant agent to prevent the darkening of the glasses which was probably associated to the reduction of Bi ions. However, CeO(2) was incorporated as a local network modifier in the glass structure even at concentrations of 0.2 mol%. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Luminescence properties of Eu(3+) doped germanate glasses containing either silver or gold nanoparticles (NPs) were investigated for excitation at 405 nm. Enhanced emissions and luminescence quenching of the Eu(3+) transitions in the range from 570 to 720 nm were observed for samples having various concentrations of metallic NPs. Electric-dipole and magnetic-dipole transitions that originate from the Eu(3+) level (5)D(0) exhibit large enhancement due to the presence of the metallic NPs. The results suggest that the magnetic response of rare-earth doped metal-dielectric composites at optical frequencies can be as strong as their electric response due to the confinement of the optical magnetic field. (C) 2010 American Institute of Physics. [doi:10.1063/1.3431347]
Resumo:
Bismuth germanate films were prepared by dip coating and spin coating techniques and the dependence of the luminescent properties of the samples on the resin viscosity and deposition technique was investigated. The resin used for the preparation of the films was obtained via Pechini method, employing the precursors Bi(2)O(3) and GeO(2). Citric acid and ethylene glycol were used as chelating and cross-linking agents, respectively. Results from X-ray diffraction and Raman spectroscopy indicated that the films sintered at 700 degrees C for 10 h presented the single crystalline phase Bi(4)Ge(3)O(12). SEM images of the films have shown that homogeneous flat films can be produced by the two techniques investigated. All the samples presented the typical Bi(4)Ge(3)O(12) emission band centred at 505 nm. Films with 3.1 mu m average thickness presented 80% of the luminescence intensity registered for the single crystal at the maximum wavelength. Published by Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The mechanism involved in the Tm(3+)((3)F(4)) -> Tb(3+)((7)F(0,1,2)) energy transfer as a function of the Tb concentration was investigated in Tm:Tb-doped germanate (GLKZ) glass. The experimental transfer rate was determined from the best fit of the (3)F(4) luminescence decay due to the Tm -> Tb energy transfer using the Burshtein model. The result showed that the 1700 nm emission from (3)F(4) can be completely quenched by 0.8 mol% of Tb(3+). As a consequence, the (7)F(3) state of Tb(3+) interacts with the (3)H(4) upper excited state of TM(3+) slighting decreasing its population. The effective amplification coefficient beta(cm(-1)) that depends on the population density difference Delta n = n((3)H(4))-n((3)F(4)) involved in the optical transition of Tm(3+) (S-band) was calculated by solving the rate equations of the system for continuous pumping with laser at 792 nm, using the Runge-Kutta numerical method including terms of fourth order. The population density inversion An as a function of Tb(3+) concentration was calculated by computational simulation for three pumping intensities, 0.2, 2.2 and 4.4 kWcm(-2). These calculations were performed using the experimental Tm -> Tb transfer rates and the optical constants of the Tm (0.1 mol%) system. It was demonstrated that 0.2 mol% of Tb(3+) propitiates best population density inversion of Tin(3+) maximizing the amplification coefficient of Tm-doped (0.1 mol%) GLKZ glass when operating as laser intensity amplification at 1.47 mu m. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The Raman, IR absorption and EXAFS spectra at the Ge K-edge and Pb LIII-edge of eight lead germanate glasses, with general formula xPbO(1-x)GeO2 with x = 0.20, 0.25, 0.33, 0.40, 0.50, 0.53, 0.56 and 0.60, have been measured. The occurrence of [GeO6] units besides [GeO4] could not be deduced unambiguously from the data. The vibrational and EXAFS data agree with a progressive depolymerization of the network. Starting from all Ge atoms linked to four bridging oxygens in GeO2 (x = 0), the number of tetrahedral units with one or two non-bridging oxygens increases with x. At low content, Pb2+ ions act as modifiers in the germanate structure, but to a lesser extent than an equivalent number of alkaline ions. © 1993.
Resumo:
The population inversion of the Tm3+ in GLKZ glass involved in the 1470 nm emission (3H4 → 3F 4) as a function of Tb (or Eu) concentration was calculated by computational simulation for a CW laser pumping at 792 nm. These calculations were performed using the experimental Tm→Tb an Tm→Eu transfer rates and the spectroscopic parameters of the Tm (0.1 mol %) system. The result shows that 0.2 mol % (Tb3+) and 0.4 mol % of Eu3+ ions propitiate best population inversion of Tm3+ (0.1 mol %) maximizing the amplification coefficient of germanate (GLKZ) glass when operating as laser intensity amplification at 1470 nm. Besides the effective deactivation of the 3F4 level, the presence of Tb3+ or Eu 3+ ions introduce a depopulation of the 3H4 emitting level by means of a cross relaxation process with Tm3+ ions. In spite of this, the whole effect is verified to be benefic for using Tm-doped GLKZ glass codoped with Tb3+ or Eu3+ as a suitable material for confectioning optical amplifiers that operates in the S-band for telecommunication.
Resumo:
We report on the fabrication of novel lead-germanate glasses and fibers. We have characterized these glasses in terms of their thermal properties, Raman spectra and refractive indices (both linear and nonlinear) and present them as viable alternatives to tellurite glasses for applications requiring highly nonlinear optical fibers. © 2013 Optical Society of America.
Resumo:
We report the first observation of photoluminescence enhancement in Er3+ doped GeO2-Bi2O3 glasses containing silicon nanocrystals (Si-NCs) excited by a laser operating at 980 nm. The growth of approximate to 200% in the intensity of the Er3+ transition S-4(3/2) -> I-4(15/2) (545 nm) and of approximate to 100% for transitions H-2(11/2) -> I-4(15/2) (525 nm), F-4(9/2) -> I-4(15/2) (660 nm), and I-4(5/2) -> I-4(13/2) (1530 nm) was observed in comparison with a reference sample that does not contain Si-NCs. The results open a new road for obtaining efficient Stokes and anti-Stokes emissions in germanate composites doped with rare-earth ions.
Resumo:
We report large photoluminescence (PL) enhancement in Eu(3+)-doped GeO(2)-Bi(2)O(3) glasses containing gold nanoparticles (NPs). Growth of approximate to 1000% in the PL intensity corresponding to the Eu(3+) transition (5)D(0)->(7)F(2), at 614 nm, was observed in comparison with a reference sample that does not contain gold NPs. Other PL bands from 580 to 700 nm are also enhanced. The enhancement of the PL intensity is attributed to the increased local field in the Eu(3+) locations due to the presence of the NPs and the energy transfer from the excited NPs to the Eu(3+) ions.
Resumo:
Infrared-to-visible and infrared-to-infrared frequency upconversion processes in Yb(3+)-Tm(3+) doped PbO-GeO(2) glasses containing silver nanoparticles (NPs) were investigated. The experiments were performed by exciting the samples with a diode laser operating at 980 nm (in resonance with the Yb(3+) transition (2)F(7/2)->(2)F(5/2)) and observing the photoluminescence (PL) in the visible and infrared regions due to energy transfer from Yb(3+) to Tm(3+) ions followed by excited state absorption in the Tm3+ ions. The intensified local field in the vicinity of the metallic NPs contributes for enhancement in the PL intensity at 480 nm (Tm(3+) :(1)G(4)->(3)H(6)) and at 800 nm (Tm(3+) : (3)H(4) -> (3)H(6)). (C) 2009 American Institute of Physics. [doi:10.1063/1.3211300]
Resumo:
In this work we performed a thorough spectroscopic and thermo-optical investigation of yttrium aluminoborate glasses doped with neodymium ions. A set of samples, prepared by the conventional melt-quenching technique and with Nd(2)O(3) concentrations varying from 0.1 to 0.75 mol %, were characterized by ground state absorption, photoluminescence, excited state lifetime measurements, and thermal lens technique. For the neodymium emission at 1064 nm ((4)F(3/2) -> (4)I(11/2) transition), no significant luminescence concentration quenching was observed and the experimental lifetime values ranged around 70 mu s. The obtained values of thermal conductivity and diffusivity of approximately 10.3 x 10(-3) W / cm K and 4.0 x 10(-3) cm(2) / s, respectively, are comparable to those of commercial laser glasses. Moreover, the fluorescence quantum efficiency of the glasses, calculated using the Judd-Ofelt formalism and luminescence decay, lies in the range from 0.28 to 0.32, larger than the typical values obtained for Nd(3+) doped YAl(3)(BO(3))(4) crystals. (c) 2009 American Institute of Physics. [DOI: 10.1063/1.3176503]
Resumo:
Multicolor and white light emissions have been achieved in Yb3+, Tm3+ and Ho3+ triply doped heavy metal oxide glasses upon laser excitation at 980 nm. The red (660 nm), green (547 nm) and blue (478 nm) up conversion emissions of the rare earth (RE) ions triply doped TeO2-GeO2-Bi2O3-K2O glass (TGBK) have been investigated as a function of the RE concentration and excitation power of the 980 nm laser diode. The most appropriate combination of RE in the TGBK glass host (1.6 wt% Yb2O3, 0.6 wt% Tm2O3 and 0.1 wt% Ho2O3) has been determined with the purpose to tune the primary colors (RGB) respective emissions and generate white light emission by varying the pump power. The involved infrared to visible up conversion mechanisms mainly consist in a three-photon blue up conversion of Tm3+ ions and a two-photon green and red up conversions of Ho3+ ions. The resulting multicolor emissions have been described according to the CIE-1931 standards. (C) 2011 Elsevier B.V. All rights reserved.