12 resultados para Bisimulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Branching bisimilarity and branching bisimilarity with explicit divergences are typically used in process algebras with silent steps when relating implementations to specifications. When an implementation fails to conform to its specification, i.e., when both are not related by branching bisimilarity [with explicit divergence], pinpointing the root causes can be challenging. In this paper, we provide characterisations of branching bisimilarity [with explicit divergence] as games between Spoiler and Duplicator, offering an operational understanding of both relations. Moreover, we show how such games can be used to assist in diagnosing non-conformance between implementation and specification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hybrid logics, which add to the modal description of transition structures the ability to refer to specific states, offer a generic framework to approach the specification and design of reconfigurable systems, i.e., systems with reconfiguration mechanisms governing the dynamic evolution of their execution configurations in response to both external stimuli or internal performance measures. A formal representation of such systems is through transition structures whose states correspond to the different configurations they may adopt. Therefore, each node is endowed with, for example, an algebra, or a first-order structure, to precisely characterise the semantics of the services provided in the corresponding configuration. This paper characterises equivalence and refinement for these sorts of models in a way which is independent of (or parametric on) whatever logic (propositional, equational, fuzzy, etc) is found appropriate to describe the local configurations. A Hennessy–Milner like theorem is proved for hybridised logics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a reconfigurable system, the response to contextual or internal change may trigger reconfiguration events which, on their turn, activate scripts that change the system׳s architecture at runtime. To be safe, however, such reconfigurations are expected to obey the fundamental principles originally specified by its architect. This paper introduces an approach to ensure that such principles are observed along reconfigurations by verifying them against concrete specifications in a suitable logic. Architectures, reconfiguration scripts, and principles are specified in Archery, an architectural description language with formal semantics. Principles are encoded as constraints, which become formulas of a two-layer graded hybrid logic, where the upper layer restricts reconfigurations, and the lower layer constrains the resulting configurations. Constraints are verified by translating them into logic formulas, which are interpreted over models derived from Archery specifications of architectures and reconfigurations. Suitable notions of bisimulation and refinement, to which the architect may resort to compare configurations, are given, and their relationship with modal validity is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé Le μ-calcul est une extension de la logique modale par des opérateurs de point fixe. Dans ce travail nous étudions la complexité de certains fragments de cette logique selon deux points de vue, différents mais étroitement liés: l'un syntaxique (ou combinatoire) et l'autre topologique. Du point de vue syn¬taxique, les propriétés définissables dans ce formalisme sont classifiées selon la complexité combinatoire des formules de cette logique, c'est-à-dire selon le nombre d'alternances des opérateurs de point fixe. Comparer deux ensembles de modèles revient ainsi à comparer la complexité syntaxique des formules as¬sociées. Du point de vue topologique, les propriétés définissables dans cette logique sont comparées à l'aide de réductions continues ou selon leurs positions dans la hiérarchie de Borel ou dans celle projective. Dans la première partie de ce travail nous adoptons le point de vue syntax¬ique afin d'étudier le comportement du μ-calcul sur des classes restreintes de modèles. En particulier nous montrons que: (1) sur la classe des modèles symétriques et transitifs le μ-calcul est aussi expressif que la logique modale; (2) sur la classe des modèles transitifs, toute propriété définissable par une formule du μ-calcul est définissable par une formule sans alternance de points fixes, (3) sur la classe des modèles réflexifs, il y a pour tout η une propriété qui ne peut être définie que par une formule du μ-calcul ayant au moins η alternances de points fixes, (4) sur la classe des modèles bien fondés et transitifs le μ-calcul est aussi expressif que la logique modale. Le fait que le μ-calcul soit aussi expressif que la logique modale sur la classe des modèles bien fondés et transitifs est bien connu. Ce résultat est en ef¬fet la conséquence d'un théorème de point fixe prouvé indépendamment par De Jongh et Sambin au milieu des années 70. La preuve que nous donnons de l'effondrement de l'expressivité du μ-calcul sur cette classe de modèles est néanmoins indépendante de ce résultat. Par la suite, nous étendons le langage du μ-calcul en permettant aux opérateurs de point fixe de lier des occurrences négatives de variables libres. En montrant alors que ce formalisme est aussi ex¬pressif que le fragment modal, nous sommes en mesure de fournir une nouvelle preuve du théorème d'unicité des point fixes de Bernardi, De Jongh et Sambin et une preuve constructive du théorème d'existence de De Jongh et Sambin. RÉSUMÉ Pour ce qui concerne les modèles transitifs, du point de vue topologique cette fois, nous prouvons que la logique modale correspond au fragment borélien du μ-calcul sur cette classe des systèmes de transition. Autrement dit, nous vérifions que toute propriété définissable des modèles transitifs qui, du point de vue topologique, est une propriété borélienne, est nécessairement une propriété modale, et inversement. Cette caractérisation du fragment modal découle du fait que nous sommes en mesure de montrer que, modulo EF-bisimulation, un ensemble d'arbres est définissable dans la logique temporelle Ε F si et seulement il est borélien. Puisqu'il est possible de montrer que ces deux propriétés coïncident avec une caractérisation effective de la définissabilité dans la logique Ε F dans le cas des arbres à branchement fini donnée par Bojanczyk et Idziaszek [24], nous obtenons comme corollaire leur décidabilité. Dans une deuxième partie, nous étudions la complexité topologique d'un sous-fragment du fragment sans alternance de points fixes du μ-calcul. Nous montrons qu'un ensemble d'arbres est définissable par une formule de ce frag¬ment ayant au moins η alternances si et seulement si cette propriété se trouve au moins au n-ième niveau de la hiérarchie de Borel. Autrement dit, nous vérifions que pour ce fragment du μ-calcul, les points de vue topologique et combina- toire coïncident. De plus, nous décrivons une procédure effective capable de calculer pour toute propriété définissable dans ce langage sa position dans la hiérarchie de Borel, et donc le nombre d'alternances de points fixes nécessaires à la définir. Nous nous intéressons ensuite à la classification des ensembles d'arbres par réduction continue, et donnons une description effective de l'ordre de Wadge de la classe des ensembles d'arbres définissables dans le formalisme considéré. En particulier, la hiérarchie que nous obtenons a une hauteur (ωω)ω. Nous complétons ces résultats en décrivant un algorithme permettant de calculer la position dans cette hiérarchie de toute propriété définissable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The article presents an algorithm for translation the system, described by MSC document into Petri Net modulo strong bisimulation. Obtained net can be later used for determining various systems' properties. Example of correction error in original system with using if described algorithm presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of finite automata minimization is important for software and hardware designing. Different types of automata are used for modeling systems or machines with finite number of states. The limitation of number of states gives savings in resources and time. In this article we show specific type of probabilistic automata: the reactive probabilistic finite automata with accepting states (in brief the reactive probabilistic automata), and definitions of languages accepted by it. We present definition of bisimulation relation for automata's states and define relation of indistinguishableness of automata states, on base of which we could effectuate automata minimization. Next we present detailed algorithm reactive probabilistic automata’s minimization with determination of its complexity and analyse example solved with help of this algorithm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Type systems for secure information flow aim to prevent a program from leaking information from H (high) to L (low) variables. Traditionally, bisimulation has been the prevalent technique for proving the soundness of such systems. This work introduces a new proof technique based on stripping and fast simulation, and shows that it can be applied in a number of cases where bisimulation fails. We present a progressive development of this technique over a representative sample of languages including a simple imperative language (core theory), a multiprocessing nondeterministic language, a probabilistic language, and a language with cryptographic primitives. In the core theory we illustrate the key concepts of this technique in a basic setting. A fast low simulation in the context of transition systems is a binary relation where simulating states can match the moves of simulated states while maintaining the equivalence of low variables; stripping is a function that removes high commands from programs. We show that we can prove secure information flow by arguing that the stripping relation is a fast low simulation. We then extend the core theory to an abstract distributed language under a nondeterministic scheduler. Next, we extend to a probabilistic language with a random assignment command; we generalize fast simulation to the setting of discrete time Markov Chains, and prove approximate probabilistic noninterference. Finally, we introduce cryptographic primitives into the probabilistic language and prove computational noninterference, provided that the underling encryption scheme is secure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coinduction is a proof rule. It is the dual of induction. It allows reasoning about non--well--founded structures such as lazy lists or streams and is of particular use for reasoning about equivalences. A central difficulty in the automation of coinductive proof is the choice of a relation (called a bisimulation). We present an automation of coinductive theorem proving. This automation is based on the idea of proof planning. Proof planning constructs the higher level steps in a proof, using knowledge of the general structure of a family of proofs and exploiting this knowledge to control the proof search. Part of proof planning involves the use of failure information to modify the plan by the use of a proof critic which exploits the information gained from the failed proof attempt. Our approach to the problem was to develop a strategy that makes an initial simple guess at a bisimulation and then uses generalisation techniques, motivated by a critic, to refine this guess, so that a larger class of coinductive problems can be automatically verified. The implementation of this strategy has focused on the use of coinduction to prove the equivalence of programs in a small lazy functional language which is similar to Haskell. We have developed a proof plan for coinduction and a critic associated with this proof plan. These have been implemented in CoClam, an extended version of Clam with encouraging results. The planner has been successfully tested on a number of theorems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coinduction is a method of growing importance in reasoning about functional languages, due to the increasing prominence of lazy data structures. Through the use of bisimulations and proofs that bisimilarity is a congruence in various domains it can be used to prove the congruence of two processes. A coinductive proof requires a relation to be chosen which can be proved to be a bisimulation. We use proof planning to develop a heuristic method which automatically constucts a candidate relation. If this relation doesn't allow the proof to go through a proof critic analyses the reasons why it failed and modifies the relation accordingly. Several proof tools have been developed to aid coinductive proofs but all require user interaction. Crucially they require the user to supply an appropriate relation which the system can then prove to be a bisimulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When studying a biological regulatory network, it is usual to use boolean network models. In these models, boolean variables represent the behavior of each component of the biological system. Taking in account that the size of these state transition models grows exponentially along with the number of components considered, it becomes important to have tools to minimize such models. In this paper, we relate bisimulations, which are relations used in the study of automata (general state transition models) with attractors, which are an important feature of biological boolean models. Hence, we support the idea that bisimulations can be important tools in the study some main features of boolean network models.We also discuss the differences between using this approach and other well-known methodologies to study this kind of systems and we illustrate it with some examples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, I study the notion of program equivalences, i.e. proving that two programs can be used interchangeably without altering the overall observable behaviour. This definition is highly dependent on the contexts in which these programs can be used; does the context have exceptions, parallelism, etc... So proofs also need to be adapted according to the expressiveness of those contexts. This thesis presents on the pi-calculus – a concurrent programming language – under various typing constraints. Types allows us to impose different disciplines like forcing a sequential execution, or ensuring linearity, meaning an object can be used once. In each case, the bisimulation, a standard proof technique for the pi-calculus, needs to be adapted accordingly to obtain a suitable equivalence. We then test how using the modified bisimulations can be used to reason about a language with higher-order functions and references, which once translated into the pi-calculus satisfies the typing constraints.