810 resultados para Bird island
Resumo:
The study on the relationship between plant species diversity and soil factors in the bird island of Qinghai Lake indicated that this island was a low diversity district,its Shannon-Wienner index and species richness decreased with the increasing soil available K,water soluble salt concentration and pH,and there were significant linear and quadratic correlations between them.Stepwise linear regressions showed that soil available K and water soluble salt were the key factors to estimate Shannon-Wienner index and species richness in this island,respectively,and no correlation was found between species evenness and soil factors.
Resumo:
生物多样性是测度生态系统内物种组成、结构多样性和复杂化程度的客观指标,是生态系统内生物群落对生物和非生物环境综合作用的外在反映.生物多样性研究已经成为当今植物生态学研究的热点之一[2,3,6,7,1],对于具体的植物群落来说,大的气候条件相对一致,群落生境的差异可能是形成物种多样性的主要原因,而土壤因子可能是一个重要的环境因子,因此,研究物种多样性与土壤环境的关系有重要的意义,国内外都对此做了大量的研究[3,5,10,17].利用数学方法研究鸟岛地区物种多样性与土壤环境的关系,一方面可以进一步了解这一片新生土地的特点,增加高海拔地区的资料,另一方面可以为保护鸟岛这一青海湖物种多样性关键地区提供理论支持.
Resumo:
Aim: Ecological niche modelling can provide valuable insight into species' environmental preferences and aid the identification of key habitats for populations of conservation concern. Here, we integrate biologging, satellite remote-sensing and ensemble ecological niche models (EENMs) to identify predictable foraging habitats for a globally important population of the grey-headed albatross (GHA) Thalassarche chrysostoma. Location: Bird Island, South Georgia; Southern Atlantic Ocean. Methods: GPS and geolocation-immersion loggers were used to track at-sea movements and activity patterns of GHA over two breeding seasons (n = 55; brood-guard). Immersion frequency (landings per 10-min interval) was used to define foraging events. EENM combining Generalized Additive Models (GAM), MaxEnt, Random Forest (RF) and Boosted Regression Trees (BRT) identified the biophysical conditions characterizing the locations of foraging events, using time-matched oceanographic predictors (Sea Surface Temperature, SST; chlorophyll a, chl-a; thermal front frequency, TFreq; depth). Model performance was assessed through iterative cross-validation and extrapolative performance through cross-validation among years. Results: Predictable foraging habitats identified by EENM spanned neritic (<500 m), shelf break and oceanic waters, coinciding with a set of persistent biophysical conditions characterized by particular thermal ranges (3–8 °C, 12–13 °C), elevated primary productivity (chl-a > 0.5 mg m−3) and frequent manifestation of mesoscale thermal fronts. Our results confirm previous indications that GHA exploit enhanced foraging opportunities associated with frontal systems and objectively identify the APFZ as a region of high foraging habitat suitability. Moreover, at the spatial and temporal scales investigated here, the performance of multi-model ensembles was superior to that of single-algorithm models, and cross-validation among years indicated reasonable extrapolative performance. Main conclusions: EENM techniques are useful for integrating the predictions of several single-algorithm models, reducing potential bias and increasing confidence in predictions. Our analysis highlights the value of EENM for use with movement data in identifying at-sea habitats of wide-ranging marine predators, with clear implications for conservation and management.
Resumo:
Aim: Ecological niche modelling can provide valuable insight into species' environmental preferences and aid the identification of key habitats for populations of conservation concern. Here, we integrate biologging, satellite remote-sensing and ensemble ecological niche models (EENMs) to identify predictable foraging habitats for a globally important population of the grey-headed albatross (GHA) Thalassarche chrysostoma. Location: Bird Island, South Georgia; Southern Atlantic Ocean. Methods: GPS and geolocation-immersion loggers were used to track at-sea movements and activity patterns of GHA over two breeding seasons (n = 55; brood-guard). Immersion frequency (landings per 10-min interval) was used to define foraging events. EENM combining Generalized Additive Models (GAM), MaxEnt, Random Forest (RF) and Boosted Regression Trees (BRT) identified the biophysical conditions characterizing the locations of foraging events, using time-matched oceanographic predictors (Sea Surface Temperature, SST; chlorophyll a, chl-a; thermal front frequency, TFreq; depth). Model performance was assessed through iterative cross-validation and extrapolative performance through cross-validation among years. Results: Predictable foraging habitats identified by EENM spanned neritic (<500 m), shelf break and oceanic waters, coinciding with a set of persistent biophysical conditions characterized by particular thermal ranges (3–8 °C, 12–13 °C), elevated primary productivity (chl-a > 0.5 mg m−3) and frequent manifestation of mesoscale thermal fronts. Our results confirm previous indications that GHA exploit enhanced foraging opportunities associated with frontal systems and objectively identify the APFZ as a region of high foraging habitat suitability. Moreover, at the spatial and temporal scales investigated here, the performance of multi-model ensembles was superior to that of single-algorithm models, and cross-validation among years indicated reasonable extrapolative performance. Main conclusions: EENM techniques are useful for integrating the predictions of several single-algorithm models, reducing potential bias and increasing confidence in predictions. Our analysis highlights the value of EENM for use with movement data in identifying at-sea habitats of wide-ranging marine predators, with clear implications for conservation and management.
Resumo:
There is increasing interest in the diving behavior of marine mammals. However, identifying foraging among recorded dives often requires several assumptions. The simultaneous acquisition of images of the prey encountered, together with records of diving behavior will allow researchers to more fully investigate the nature of subsurface behavior. We tested a novel digital camera linked to a time-depth recorder on Antarctic fur seals (Arctocephalus gazella). During the austral summer 2000-2001, this system was deployed on six lactating female fur seals at Bird Island, South Georgia, each for a single foraging trip. The camera was triggered at depths greater than 10 m. Five deployments recorded still images (640 x 480 pixels) at 3-sec intervals (total 8,288 images), the other recorded movie images at 0.2-sec intervals (total 7,598 frames). Memory limitation (64 MB) restricted sampling to approximately 1.5 d of 5-7 d foraging trips. An average of 8.5% of still pictures (2.4%-11.6%) showed krill (Euphausia superba) distinctly, while at least half the images in each deployment were empty, the remainder containing blurred or indistinct prey. In one deployment krill images were recorded within 2.5 h (16 km, assuming 1.8 m/sec travel speed) of leaving the beach. Five of the six deployments also showed other fur seals foraging in conjunction with the study animal. This system is likely to generate exciting new avenues for interpretation of diving behavior.
Resumo:
Pronounced phenotypic shifts in island populations are typically attributed to natural selection, but reconstructing heterogeneity in long-term selective regimes remains a challenge. We examined a scenario of divergence proposed for species colonizing a new environment, involving directional selection with a rapid shift to a new optimum and subsequent stabilization. We provide some of the first empirical evidence for this model of evolution using morphological data from three timescales in an island bird, Zosterops lateralis chlorocephalus. In less than four millennia since separation from its mainland counterpart, a substantial increase in body size has occurred and was probably achieved in fewer than 500 generations after colonization. Over four recent decades, morphological traits have fluctuated in size but showed no significant directional trends, suggesting maintenance of a relatively stable phenotype. Finally, estimates of contemporary selection gradients indicated generally weak directional selection. These results provide a rare description of heterogeneity in long-term natural regimes, and caution that observations of current selection may be of limited value in inferring mechanisms of past adaptation due to a lack of constancy even over short time-frames.
Resumo:
Island races of passerine birds display repeated evolution towards larger body size compared with their continental ancestors. The Capricorn silvereye (Zosterops lateralis chlorocephalus) has become up to six phenotypic standard deviations bigger in several morphological measures since colonization of an island approximately 4000 years ago. We estimated the genetic variance-covariance (G) matrix using full-sib and 'animal model' analyses, and selection gradients, for six morphological traits under field conditions in three consecutive cohorts of nestlings. Significant levels of genetic variance were found for all traits. Significant directional selection was detected for wing and tail lengths in one year and quadratic selection on culmen depth in another year. Although selection gradients on many traits were negative, the predicted evolutionary response to selection of these traits for all cohorts was uniformly positive. These results indicate that the G matrix and predicted evolutionary responses are consistent with those of a population evolving in the manner observed in the island passerine trend, that is, towards larger body size.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Adult individuals of the island pitviper Bothrops insularis have a diet based on birds. We analysed bird species recorded in the gut of this snake and found that it relies on two out of 41 bird species recorded on the island. When present, these two prey species were among the most abundant passerine birds on the island. A few other migrant birds were very occasionally recorded as prey. A resident bird species (Troglodytes musculus) is the most abundant passerine on the island, but seems able to avoid predation by the viper. Bothrops insularis is most commonly found on the ground. However, during the abundance peak of the tyrannid passerine Elaenia chilensis on the island, more snakes were found on vegetation than on the ground. We suggest that one cause may be that these birds forage mostly on vegetation, and thus cause the snakes to search for prey on this arboreal substratum.
Resumo:
Cover title.
Resumo:
The founding of new populations by small numbers of colonists has been considered a potentially important mechanism promoting evolutionary change in island populations. Colonizing species, such as members of the avian species complex Zosterops lateralis, have been used to support this idea. A large amount of background information on recent colonization history is available for one Zosterops subspecies, Z. lateralis lateralis, providing the opportunity to reconstruct the population dynamics of its colonization sequence. We used a Bayesian approach to combine historical and demographic information available on Z. l. lateralis with genotypic data from six microsatellite loci, and a rejection algorithm to make simultaneous inferences on the demographic parameters describing the recent colonization history of this subspecies in four southwest Pacific islands. Demographic models assuming mutation–drift equilibrium or a large number of founders were better supported than models assuming founder events for three of four recently colonized island populations. Posterior distributions of demographic parameters supported (i) a large stable effective population size of several thousands individuals with point estimates around 4000–5000; (ii) a founder event of very low intensity with a large effective number of founders around 150–200 individuals for each island in three of four islands, suggesting the colonization of those islands by one flock of large size or several flocks of average size; and (iii) a founder event of higher intensity on Norfolk Island with an effective number of founders around 20 individuals, suggesting colonization by a single flock of moderate size. Our inferences on demographic parameters, especially those on the number of founders, were relatively insensitive to the precise choice of prior distributions for microsatellite mutation processes and demographic parameters, suggesting that our analysis provides a robust description of the recent colonization history of the subspecies.
Resumo:
Differences between island- and mainland-dwelling forms provide several classic ecological puzzles. Why, for instance, are island-dwelling passerine birds consistently larger than their mainland counterparts? We examine the 'Dominance hypothesis', based on intraspecific competition, which states that large size in island passerines evolves through selection for success in agonistic encounters. We use the Heron Island population of Capricorn silvereyes (Zosterops lateralis chlorocephalus), a large-bodied island-dwelling race of white-eye (Zosteropidae), to test three assumptions of this hypothesis; that (i) large size is positively associated with high fitness, (ii) large size is associated with dominance, and (iii) the relationship between size and dominance is particularly pronounced under extreme intraspecific competition. Our results supported the first two of these assumptions, but provided mixed evidence on the third. On balance, we suggest that the Dominance Hypothesis is a plausible mechanism for the evolution of large size of island passerines, but urge further empirical tests on the role of intraspecific competition on oceanic islands versus that on mainlands.