7 resultados para Biospecimens
Resumo:
The first version of the Standard PREanalytical Code (SPREC) was developed in 2009 by the International Society for Biological and Environmental Repositories (ISBER) Biospecimen Science Working Group to facilitate documentation and communication of the most important preanalytical quality parameters of different types of biospecimens used for research. This same Working Group has now updated the SPREC to version 2.0, presented here, so that it contains more options to allow for recent technological developments. Existing elements have been fine tuned. An interface to the Biospecimen Reporting for Improved Study Quality (BRISQ) has been defined, and informatics solutions for SPREC implementation have been developed. A glossary with SPRECrelated definitions has also been added.
Resumo:
The Australian Bone Marrow Donor Registry (ABMDR) is a publicly funded company that is part of an international network that facilitates unrelated bone marrow transplantation. This role means that the ABMDR has access to a large biospecimen repository, therefore making it a highly valuable research resource. Recognising the potential value of these biospecimens for research purposes, the ABMDR is in the process of determining whether, and how, to share its biospecimens with other biobanks. While this would undoubtedly be of value to the scientific community, and ultimately to the wider community, it would also inevitably transform the role of an institution whose primary role is therapeutic, and would compromise the degree of control that a custodian has over donated material. This article describe the challenges confronting the ABMDR, and organisations like it, in balancing their duties to donors, patients, researchers and the general public. These problems have led inevitably to the use of "property" rights language in the discussion of these issues but notions of gift, ownership, trusteeship and transfer might also be considered.
Resumo:
Research studies aimed at advancing cancer prevention, diagnosis, and treatment depend on a number of key resources, including a ready supply of high-quality annotated biospecimens from diverse ethnic populations that can be used to test new drugs, assess the validity of prognostic biomarkers, and develop tailor-made therapies. In November 2011, KHCCBIO was established at the King Hussein Cancer Center (KHCC) with the support of Seventh Framework Programme (FP7) funding from the European Union (khccbio.khcc.jo). KHCCBIO was developed for the purpose of achieving an ISO accredited cancer biobank through the collection, processing, and preservation of high-quality, clinically annotated biospecimens from consenting cancer patients, making it the first cancer biobank of its kind in Jordan. The establishment of a state-of-the-art, standardized biospecimen repository of matched normal and lung tumor tissue, in addition to blood components such as serum, plasma, and white blood cells, was achieved through the support and experience of its European partners, Trinity College Dublin, Biostor Ireland, and accelopment AG. To date, KHCCBIO along with its partners, have worked closely in establishing an ISO Quality Management System (QMS) under which the biobank will operate. A Quality Policy Manual, Validation, and Training plan have been developed in addition to the development of standard operating procedures (SOPs) for consenting policies on ethical issues, data privacy, confidentiality, and biobanking bylaws. SOPs have also been drafted according to best international practices and implemented for the donation, procurement, processing, testing, preservation, storage, and distribution of tissues and blood samples from lung cancer patients, which will form the basis for the procurement of other cancer types. KHCCBIO will be the first ISO accredited cancer biobank from a diverse ethnic Middle Eastern and North African population. It will provide a unique and valuable resource of high-quality human biospecimens and anonymized clinicopathological data to the cancer research communities world-wide.
Resumo:
Approaches to the management of patients with cancer have been revolutionised by the ability to examine tumours at a genetic and molecular level and tailor treatments accordingly. Underpinning this work is the need for large numbers of high-quality human biospecimens for use in translational research studies to identify new biomarkers for the prediction, diagnosis and treatment of cancer. Biobanking has subsequently emerged as a dedicated activity to provide the infrastructure required for the standardised collection, storage and distribution of high quality human biospecimens for research purposes. This article provides an overview of the role of biobanks and the vital contribution they make to the delivery of cancer care for patients now and in the future
Resumo:
Repositories containing high quality human biospecimens linked with robust and relevant clinical and pathological information are required for the discovery and validation of biomarkers for disease diagnosis, progression and response to treatment. Current molecular based discovery projects using either low or high throughput technologies rely heavily on ready access to such sample collections. It is imperative that modern biobanks align with molecular diagnostic pathology practices not only to provide the type of samples needed for discovery projects but also to ensure requirements for ongoing sample collections and the future needs of researchers are adequately addressed. Biobanks within comprehensive molecular pathology programmes are perfectly positioned to offer more than just tumour derived biospecimens; for example, they have the ability to facilitate researchers gaining access to sample metadata such as digitised scans of tissue samples annotated prior to macrodissection for molecular diagnostics or pseudoanonymised clinical outcome data or research results retrieved from other users utilising the same or overlapping cohorts of samples. Furthermore, biobanks can work with molecular diagnostic laboratories to develop standardized methodologies for the acquisition and storage of samples required for new approaches to research such as ‘liquid biopsies’ which will ultimately feed into the test validations required in large prospective clinical studies in order to implement liquid biopsy approaches for routine clinical practice. We draw on our experience in Northern Ireland to discuss how this harmonised approach of biobanks working synergistically with molecular pathology programmes is key for the future success of precision medicine.
Resumo:
Medical research has greatly beneited from molecular biology and increasingly relies on tools from the “omics” disciplines (mainly genomics, transcriptomics, proteomics and metabolomics). The availability of biological samples preserved with high quality standards is a sine qua non condition for such studies and their repositories are referred to as biobanks. Biobanks support the transportation, storage, preservation, and initial pathological and analytical examinations of biospecimens, as well as the protection of relevant information and the comparison of clinical and laboratory findings. A biobank facility is one of the most valuable tools the academic medicine organizations can offer to their researchers to improve the competitiveness of their current and future medical research. it acts as an essential bridge and an effective catalyst for research synergies between basic and clinical sciences, and it can be potentiated with efforts to raise funds for acquiring and maintaining cutting-edge analytical infrastructure to better serve its clinical, pharmaceutical and biotech clients.