39 resultados para Biosignals
Resumo:
The Check Your Biosignals Here initiative (CYBHi) was developed as a way of creating a dataset and consistently repeatable acquisition framework, to further extend research in electrocardiographic (ECG) biometrics. In particular, our work targets the novel trend towards off-the-person data acquisition, which opens a broad new set of challenges and opportunities both for research and industry. While datasets with ECG signals collected using medical grade equipment at the chest can be easily found, for off-the-person ECG data the solution is generally for each team to collect their own corpus at considerable expense of resources. In this paper we describe the context, experimental considerations, methods, and preliminary findings of two public datasets created by our team, one for short-term and another for long-term assessment, with ECG data collected at the hand palms and fingers. (C) 2013 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Thesis submitted in the fulfillment of the requirements for the Degree of Master in Biomedical Engineering
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Benefits of long-term monitoring have drawn considerable attention in healthcare. Since the acquired data provides an important source of information to clinicians and researchers, the choice for long-term monitoring studies has become frequent. However, long-term monitoring can result in massive datasets, which makes the analysis of the acquired biosignals a challenge. In this case, visualization, which is a key point in signal analysis, presents several limitations and the annotations handling in which some machine learning algorithms depend on, turn out to be a complex task. In order to overcome these problems a novel web-based application for biosignals visualization and annotation in a fast and user friendly way was developed. This was possible through the study and implementation of a visualization model. The main process of this model, the visualization process, comprised the constitution of the domain problem, the abstraction design, the development of a multilevel visualization and the study and choice of the visualization techniques that better communicate the information carried by the data. In a second process, the visual encoding variables were the study target. Finally, the improved interaction exploration techniques were implemented where the annotation handling stands out. Three case studies are presented and discussed and a usability study supports the reliability of the implemented work.
Resumo:
This research proposes a generic methodology for dimensionality reduction upon time-frequency representations applied to the classification of different types of biosignals. The methodology directly deals with the highly redundant and irrelevant data contained in these representations, combining a first stage of irrelevant data removal by variable selection, with a second stage of redundancy reduction using methods based on linear transformations. The study addresses two techniques that provided a similar performance: the first one is based on the selection of a set of the most relevant time?frequency points, whereas the second one selects the most relevant frequency bands. The first methodology needs a lower quantity of components, leading to a lower feature space; but the second improves the capture of the time-varying dynamics of the signal, and therefore provides a more stable performance. In order to evaluate the generalization capabilities of the methodology proposed it has been applied to two types of biosignals with different kinds of non-stationary behaviors: electroencephalographic and phonocardiographic biosignals. Even when these two databases contain samples with different degrees of complexity and a wide variety of characterizing patterns, the results demonstrate a good accuracy for the detection of pathologies, over 98%.The results open the possibility to extrapolate the methodology to the study of other biosignals.
Resumo:
Thesis submitted in the fulfilment of the requirements for the Degree of Master in Electronic and Telecomunications Engineering
Resumo:
The study of biosignals has had a transforming role in multiple aspects of our society, which go well beyond the health sciences domains to which they were traditionally associated with. While biomedical engineering is a classical discipline where the topic is amply covered, today biosignals are a matter of interest for students, researchers and hobbyists in areas including computer science, informatics, electrical engineering, among others. Regardless of the context, the use of biosignals in experimental activities and practical projects is heavily bounded by the cost, and limited access to adequate support materials. In this paper we present an accessible, albeit versatile toolkit, composed of low-cost hardware and software, which was created to reinforce the engagement of different people in the field of biosignals. The hardware consists of a modular wireless biosignal acquisition system that can be used to support classroom activities, interface with other devices, or perform rapid prototyping of end-user applications. The software comprehends a set of programming APIs, a biosignal processing toolbox, and a framework for real time data acquisition and postprocessing. (C) 2014 Elsevier Ireland Ltd. All rights reserved.
Resumo:
A classical application of biosignal analysis has been the psychophysiological detection of deception, also known as the polygraph test, which is currently a part of standard practices of law enforcement agencies and several other institutions worldwide. Although its validity is far from gathering consensus, the underlying psychophysiological principles are still an interesting add-on for more informal applications. In this paper we present an experimental off-the-person hardware setup, propose a set of feature extraction criteria and provide a comparison of two classification approaches, targeting the detection of deception in the context of a role-playing interactive multimedia environment. Our work is primarily targeted at recreational use in the context of a science exhibition, where the main goal is to present basic concepts related with knowledge discovery, biosignal analysis and psychophysiology in an educational way, using techniques that are simple enough to be understood by children of different ages. Nonetheless, this setting will also allow us to build a significant data corpus, annotated with ground-truth information, and collected with non-intrusive sensors, enabling more advanced research on the topic. Experimental results have shown interesting findings and provided useful guidelines for future work. Pattern Recognition
Resumo:
With the advent of wearable sensing and mobile technologies, biosignals have seen an increasingly growing number of application areas, leading to the collection of large volumes of data. One of the difficulties in dealing with these data sets, and in the development of automated machine learning systems which use them as input, is the lack of reliable ground truth information. In this paper we present a new web-based platform for visualization, retrieval and annotation of biosignals by non-technical users, aimed at improving the process of ground truth collection for biomedical applications. Moreover, a novel extendable and scalable data representation model and persistency framework is presented. The results of the experimental evaluation with possible users has further confirmed the potential of the presented framework.
Resumo:
Biosignals analysis has become widespread, upstaging their typical use in clinical settings. Electrocardiography (ECG) plays a central role in patient monitoring as a diagnosis tool in today's medicine and as an emerging biometric trait. In this paper we adopt a consensus clustering approach for the unsupervised analysis of an ECG-based biometric records. This type of analysis highlights natural groups within the population under investigation, which can be correlated with ground truth information in order to gain more insights about the data. Preliminary results are promising, for meaningful clusters are extracted from the population under analysis. © 2014 EURASIP.
Resumo:
Applications involving biosignals, such as Electrocardiography (ECG), are becoming more pervasive with the extension towards non-intrusive scenarios helping targeting ambulatory healthcare monitoring, emotion assessment, among many others. In this study we introduce a new type of silver/silver chloride (Ag/AgCl) electrodes based on a paper substrate and produced using an inkjet printing technique. This type of electrodes can increase the potential applications of biosignal acquisition technologies for everyday life use, given that there are several advantages, such as cost reduction and easier recycling, resultant from the approach explored in our work. We performed a comparison study to assess the quality of this new electrode type, in which ECG data was collected with three types of Ag/AgCl electrodes: i) gelled; ii) dry iii) paper-based inkjet printed. We also compared the performance of each electrode when acquired using a professional-grade gold standard device, and a low cost platform. Experimental results showed that data acquired using our proposed inkjet printed electrode is highly correlated with data obtained through conventional electrodes. Moreover, the electrodes are robust to high-end and low-end data acquisition devices. Copyright © 2014 SCITEPRESS - Science and Technology Publications. All rights reserved.
Resumo:
Physical computing has spun a true global revolution in the way in which the digital interfaces with the real world. From bicycle jackets with turn signal lights to twitter-controlled christmas trees, the Do-it-Yourself (DiY) hardware movement has been driving endless innovations and stimulating an age of creative engineering. This ongoing (r)evolution has been led by popular electronics platforms such as the Arduino, the Lilypad, or the Raspberry Pi, however, these are not designed taking into account the specific requirements of biosignal acquisition. To date, the physiological computing community has been severely lacking a parallel to that found in the DiY electronics realm, especially in what concerns suitable hardware frameworks. In this paper, we build on previous work developed within our group, focusing on an all-in-one, low-cost, and modular biosignal acquisition hardware platform, that makes it quicker and easier to build biomedical devices. We describe the main design considerations, experimental evaluation and circuit characterization results, together with the results from a usability study performed with volunteers from multiple target user groups, namely health sciences and electrical, biomedical, and computer engineering. Copyright © 2014 SCITEPRESS - Science and Technology Publications. All rights reserved.
Resumo:
Electrocardiogram (ECG) biometrics are a relatively recent trend in biometric recognition, with at least 13 years of development in peer-reviewed literature. Most of the proposed biometric techniques perform classifi-cation on features extracted from either heartbeats or from ECG based transformed signals. The best representation is yet to be decided. This paper studies an alternative representation, a dissimilarity space, based on the pairwise dissimilarity between templates and subjects' signals. Additionally, this representation can make use of ECG signals sourced from multiple leads. Configurations of three leads will be tested and contrasted with single-lead experiments. Using the same k-NN classifier the results proved superior to those obtained through a similar algorithm which does not employ a dissimilarity representation. The best Authentication EER went as low as 1:53% for a database employing 503 subjects. However, the employment of extra leads did not prove itself advantageous.
Resumo:
Thesis submitted in the fulfillment of the requirements for the Degree of Master in Biomedical Engineering