683 resultados para Biosensor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel electrochemical H2O2 biosensor was constructed by embedding horseradish peroxide (HRP) in a 1-butyl-3-methylimidazolium tetrafluoroborate doped DNA network casting on a gold electrode. The HRP entrapped in the composite system displayed good electrocatalytic response to the reduction of H2O2. The composite system could provide both a biocompatible microenvironment for enzymes to keep their good bioactivity and an effective pathway of electron transfer between the redox center of enzymes, H2O2 and the electrode surface. Voltammetric and time-based amperometric techniques were applied to characterize the properties of the biosensor. The effects of pH and potential on the amperometric response to H2O2 were studied. The biosensor can achieve 95% of the steady-state current within 2 s response to H2O2. The detection limit of the biosensor was 3.5 mu M, and linear range was from 0.01 to 7.4 mM. Moreover, the biosensor exhibited good sensitivity and stability. The film can also be readily used as an immobilization matrix to entrap other enzymes to prepare other similar biosensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pH-sensitive property of the single-wall carbon nanotube modified electrode based oil the electroactive group on the single-wall carbon nanotube was explored by differential pulse voltammetry technique. In pH range 1-13 investigated in Britton-Robinson (B-R) buffer, the anodic peak shifted negatively along with the increase of pH exhibiting a reversible Nernstian response. Experiments were carried out to investigate the response of the single-wall carbon nanotube (SWNT) modified electrode to analytes associated with pH change. The response behavior of the modified electrode to ammonia was studied as an example. The potential response could reach equilibrium within 5 min. The modified electrode had good operational stability. Voltammetric urease and acetylcholinesterase biosensors were constructed by immobilizing the enzymes with sol-get hybrid material. The maximum potential shift could reach 0.130 and 0.220V for urea and acetylthiocholine, respectively. The methods for preparing sensor and biosensor were simple and reproducible and the range of analytes could be extended to substrates of other hydrolyases and esterases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method for fabrication of horseradish peroxidase (HRP) biosensor has been developed by self-assembling gold nanoparticles on thiol-functionalized poly(styrene-co-acrylic acid) (St-co-AA) nanospheres. At first, a cleaned gold electrode was immersed in thiol-functionalized poly(St-co-AA) nanosphere latex prepared by emulsifier-free emulsion polymerization of St with AA and function with dithioglycol to assemble the nanospheres, then gold nanoparticles were chemisorbed onto the thiol groups. Finally, horseradish peroxi- dase was immobilized on the surface of the gold nanoparticles. The sensor displayed an excellent electrocatalytical response to reduction of H2O2 without the aid of an electron mediator. The sensor was highly sensitive to hydrogen peroxide with a detection limit of 4.0 mumol l(-1), and the linear range was from 10.0 mumol l(-1) to 7.0 mmol l(-1). The biosensor retained more than 97.8% of its original activity after 60 days of use. Moreover, the Studied biosensor exhibited good current repeatability and good fabrication reproducibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrooxidation of thionine on screen-printed carbon electrode gives rise to the modification of the surface with amino groups for the covalent immobilization of enzymes such as horseradish peroxidase (HRP). The biosensor was constructed using multilayer enzymes which covalently immobilized onto the surface of amino groups modified screen-printed carbon electrode using glutaraldehyde as a bifunctional reagent. The multilayer assemble of HRP has been characterized with the cyclic voltammetry and the faradaic impedance spectroscopy. The H2O2 biosensor exhibited a fast response (2 s) and low detection limit (0.5 muM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An original amperometric biosensor based on the simultaneous entrapment of acid phosphatase (AcP) and polyphenol oxidase (PPO) into anionic clays (layered double hydroxides) was developed for the specific detection of As(V). The functioning principle of the bienzyme electrode consisted of the successive hydrolysis of phenyl phosphate into phenol by AcP, followed by the oxidation of phenol into o-quinone by PPO. The phenyl phosphate concentration was, thus, monitored by potentiostating the biosensor at -0.2 V vs Ag/AgCl to detect amperometrically the generated quinone. The detection of As(V) was based on its inhibitory effect on AcP activity toward the hydrolysis of phenyl phosphate into phenol. The As(V) can be specifically determined in pH 6.0 acetate buffer without any interferences of As(III) or phosphate, the detection limit being 2 nM or 0.15 ppb after an incubation step for 20 min.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The carbon nanotubes-chitosan (CNTs-CS) composite provides a suitable biosensing matrix due to its good conductivity, high stability, and good biocompatibility. Enzymes can be firmly incorporated into the matrix without the aid of other cross-linking reagents. The composite is easy to form insoluble film in solution above pH 6.3. Based on this, a facilely fabricated amperometric biosensor by entrapping laccase into the CNTs-CS composite film has been developed. At pH 6.0, the fungi laccase incorporated into the composite film remains better catalytic activity than that dissolved in solution. The system is in favor of the accessibility of substrate to the active site of laccase, thus the affinity to substrates is improved greatly, such as 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS), catechol, and 0, with K. values of 19.86 mu M, 9.43 mu M, and 3.22 mM, respectively. The major advantages of the as-prepared biosensor are: detecting different substrates (ABTS, catechol, and 02), possessing high affinity and sensitivity, durable long-term stability, and facile preparation procedure. On the other hand, the system can be applied in fabrication of biofuel cells as the cathodic catalysts based on its good electrocatalysis for oxygen reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new electrogenerated chemiluminescence biosensor was fabricated by immobilizing ECL reagent Ru(bPY)(3)(2+) and alcohol dehydrogenase in sol-gel/chitosan/poly(sodium 4-styrene sulfonate) (PSS) organically modified composite material. The component PSS was used to immobilize ECL reagent Ru(bpy)(3)(2+) by ion-exchange, while the addition of chitosan was to prevent the cracking of conventional sol-gel-derived glasses and provide biocompatible microenvironment for alcohol dehydrogenase. Such biosensor combined enzymatic selectivity with the sensitivity of ECL detection for quantification of enzyme substrate and it was much simpler than previous double-layer design. The detection limit was 9.3 x 10(-6) M for alcohol (S/N = 3) with a linear range from 2.79 x 10(-5) to 5.78 x 10(-2) M. With ECL detection, the biosensor exhibited wide linear range, high sensitivity and good stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel strategy to construct a sensitive mediatorless sensor of H2O2 was described. At first, a cleaned gold electrode was immersed in thiol-functionalized poly(styrene-co-acrylic acid) (St-co-AA) nanosphere latex prepared by emulsifier-free emulsion polymerization St with AA and function with dithioglycol to assemble the nanospheres, then gold nanoparticles were chemisorbed onto the thiol groups and formed monolayers on the surface of poly(St-co-AA) nanospheres. Finally, horseradish peroxidase (HRP) was immobilized on the surface of the gold nanoparticles. The sensor displayed an excellent electrocatalytical response to reduction of H2O2 without the aid of an electron mediator. The biosensor showed a linear range of 8.0 mu mol L-1-7.0 mmol L-1 with a detection limit of 4.0 mu mol L-1. The biosensor retained more than 97.8% of its original activity after 60 days' storage. Moreover, the studied biosensor exhibited good current reproducibility and good fabrication reproducibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new amperometric biosensor for hydrogen peroxide was developed based on cross-linking horseradish peroxidase (HRP) by glutaraldehyde with multiwall carbon nanotubes/chitosan (MWNTs/chitosan) composite film coated on a glassy carbon electrode. MWNTs were firstly dissolved in a chitosan solution. Then the morphology of MWNTs/chitosan composite film was characterized by field-emission scanning electron microscopy. The results showed that MWNTs were well soluble in chitosan and robust films could be formed on the surface. HRP was cross-linked by glutaraldehyde with MWNTs/chitosan film to prepare a hydrogen peroxide biosensor. The enzyme electrode exhibited excellent electrocatalytic activity and rapid response for H2O2 in the absence of a mediator. The linear range of detection towards H2O2 (applied potential: -0.2 V) was from 1.67 x 10(-5) to 7.40 x 10(-4) M with correction coefficient of 0.998. The biosensor had good repeatability and stability for the determination of H2O2. There were no interferences from ascorbic acid, glucose, citrate acid and lactic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new type of sol-gel-derived titanium oxide/copolymer composite material was developed and used for the construction of glucose biosensor. The composite material merged the best properties of the inorganic species, titanium oxide and the organic copolymer, poly(vinyl alcohol) grafting 4-vinylpyridine (PVA-g-PVP). The glucose oxidase entrapped in the composite matrix retained its bioactivity. Morphologies of the composite-modified electrode and the enzyme electrode were characterized with a scanning electron microscope. The dependence of the current responses on enzyme-loading and pH was studied. The response time of the biosensor was < 20 s and the linear range was up to 9 mM with a sensitivity of 405 nA/mM. The biosensor was stable for at least I month. In addition, the tetrathiafulvalene-mediated enzyme electrode was constructed for the decrease of detection potential and the effect of three common physiological sources that might interfere was also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel type of biochemical oxygen demand (BOD) biosensor was developed for water monitor, based on co-immobilizing of Trichosporon cutaneum and Bacillus subtilis in the sol-gel derived composite material which is composed of silica and the grafting copolymer of poly (vinyl alcohol) and 4-vinylpyridine (PVA-g-P(4-VP)). Factors that influence the performance of the resulting biosensor were examined. The biodegradable substrate spectrum could be expanded by the co-immobilized microorganisms. The biosensor prepared also exhibited good reproducibility and long-term stability. Good agreement was obtained between the results of the sensor BOD measurement and those obtained from conventional BOD5 method for water samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new type of organically modified sol-gel/chitosan composite material was developed and used for the construction of glucose biosensor. This material provided good biocompatibility and the stabilizing microenvironment around the enzyme. Ferrocene was immobilized on the surface of glassy carbon electrode as a mediator. The characteristics of the biosensor were studied by cyclic voltammetry and chronoamperometry. The effects of enzyme-loading, buffer pH, applied potential and several interferences on the response of the enzyme electrode were investigated. The simple and low-cost glucose biosensor exhibited high sensitivity and good stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stable films of didodecyldimethylammonium bromide (DDAB, a synthetic lipid) and horseradish peroxidase (HRP) were made by casting the mixture of the aqueous vesicle of DDAB and HRP onto the glassy carbon (GC) electrode. The direct electron transfer between electrode and HRP immobilized in lipid film has been demonstrated. The lipid films were used to supply a biological environment resembling biomembrane on the surface of the electrode. A pair of redox peaks attributed to the direct redox reaction of HRP were observed in the phosphate buffer solution (pH 5.5). The cathodic peak current increased dramatically while anodic peak decreased by addition of small amount H2O2. The pH effect on amperometric response to H2O2 was studied. The biosensor also exhibited fast response (5 s), good stability and reproducibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A highly catalytic activity microperoxidase-11 (MP-11) biosensor for H2O2 was developed to immobilizing the heme peptide in didodecyldimethylammonium bromide (DDAB) lipid membrane. The enzyme electrode thus obtained responded to H2O2 without electron mediator or promoter, at a potential of +0.10 V versus Ag \ AgCl. A linear calibration curve is obtained over the range from 2.0 x 10(-5) to 2.4 x 10(-3) M. The biosensor responds to hydrogen peroxide in 15 s and has a detection limit of 8 x 10(-7) M (S/N = 3) Providing a natural environment with lipid membrane for protein immobilization and maintenance of protein functions is a suitable option for the design of biosensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A surface plasmon resonance (SPR) biosensor was used for the first time to determine the concentration of ferritin in both HBS-EP buffer and serum. The monoclonal antibody was immobilized on the carboxymethyl dextran-modified gold surface by an amine coupling method. The interaction of antibody with antigen was monitored in real-time. The signal was enhanced by sandwich amplification strategy to improve the sensitivity and specificity of the immunoassay, especially in serum. The linear range of the assay in serum is over 30-200 ng ml with the detection limit of 28 ng ml(-1). The sensitivity, specificity, and reproducibility of the assay are satisfactory. The analyte and enhancement antibody-binding surface could be regenerated by pH 2.0 glycine-HCl buffer and the same antibody-immobilized surface could be used for more than 50 cycles of ferritin binding and regeneration.