171 resultados para Bioreactors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of large-scale solid-stale fermentation (SSF) processes is hampered by the lack of simple tools for the design of SSF bioreactors. The use of semifundamental mathematical models to design and operate SSF bioreactors can be complex. In this work, dimensionless design factors are used to predict the effects of scale and of operational variables on the performance of rotating drum bioreactors. The dimensionless design factor (DDF) is a ratio of the rate of heat generation to the rate of heat removal at the time of peak heat production. It can be used to predict maximum temperatures reached within the substrate bed for given operational variables. Alternatively, given the maximum temperature that can be tolerated during the fermentation, it can be used to explore the combinations of operating variables that prevent that temperature from being exceeded. Comparison of the predictions of the DDF approach with literature data for operation of rotating drums suggests that the DDF is a useful tool. The DDF approach was used to explore the consequences of three scale-up strategies on the required air flow rates and maximum temperatures achieved in the substrate bed as the bioreactor size was increased on the basis of geometric similarity. The first of these strategies was to maintain the superficial flow rate of the process air through the drum constant. The second was to maintain the ratio of volumes of air per volume of bioreactor constant. The third strategy was to adjust the air flow rate with increase in scale in such a manner as to maintain constant the maximum temperature attained in the substrate bed during the fermentation. (C) 2000 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Residence time distribution studies of gas through a rotating drum bioreactor for solid-state fermentation were performed using carbon monoxide as a tracer gas. The exit concentration as a function of time differed considerably from profiles expected for plug flow, plug flow with axial dispersion, and continuous stirred tank reactor (CSTR) models. The data were then fitted by least-squares analysis to mathematical models describing a central plug flow region surrounded by either one dead region (a three-parameter model) or two dead regions (a five-parameter model). Model parameters were the dispersion coefficient in the central plug flow region, the volumes of the dead regions, and the exchange rates between the different regions. The superficial velocity of the gas through the reactor has a large effect on parameter values. Increased superficial velocity tends to decrease dead region volumes, interregion transfer rates, and axial dispersion. The significant deviation from CSTR, plug flow, and plug flow with axial dispersion of the residence time distribution of gas within small-scale reactors can lead to underestimation of the calculation of mass and heat transfer coefficients and hence has implications for reactor design and scaleup. (C) 2001 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evaporative cooling is extremely important for large-scale operation of rotating drum bioreactors (RDBs). Outlet water vapour concentrations were measured for a RDB containing wet wheat bran with the aim of determining the mass transfer coefficient for evaporation from the bran bed to the headspace. Mass transfer was expressed as the mass transfer coefficient times the area for transfer per unit volume of void space in the drum. Values of ka' were determined under combinations of aeration superficial velocities ranging from 0.006 to 0.017 ms(-1) and rotation rates ranging from 0 to 9 rpm. Mass transfer coefficients were evaluated using a variety of residence time distributions (RTDs) for flow in the gas phase including plug flow and well-mixed and a Central Jet RTD based on RTD studies. If plug flow is assumed, the degree of holdup at low effective Peclet (Pe(eff)) numbers gives an apparent under-estimate of ka' compared with empirical correlations. Values of ka' calculated using the Central Jet RTD agree well with values of ka' from literature correlations. There was a linear relationship between ka' and effective Peclet number: ka' = 2.32 x 10(-3) Pe(eff). (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Engineering and Technology Sciences, Biotechnology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Química e Bioquímica, Especialidade em Engenharia Bioquímica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fat, oils, and grease present in complex wastewater can be readily converted to methane, but the energy potential of these compounds is not always recyclable, due to incomplete degradation of long chain fatty acids (LCFA) released during lipids hydrolysis. Oleate (C18:1) is generally the dominant LCFA in lipid-containing wastewater, and its conversion in anaerobic bioreactors results in palmitate (C16:0) accumulation. The reason why oleate is continuously converted to palmitate without further degradation via β-oxidation is still unknown. In this work, the influence of methanogenic activity in the initial conversion steps of unsaturated LCFA was studied in 10 bioreactors continuously operated with saturated or unsaturated C16- and C18-LCFA, in the presence or absence of the methanogenic inhibitor bromoethanesulfonate (BrES). Saturated Cn-2-LCFA accumulated both in the presence and absence of BrES during the degradation of unsaturated Cn-LCFA, and represented more than 50\% of total LCFA. In the presence of BrES further conversion of saturated intermediates did not proceed, not even when prolonged batch incubation was applied. As the initial steps of unsaturated LCFA degradation proceed uncoupled from methanogenesis, accumulation of saturated LCFA can be expected. Analysis of the active microbial communities suggests a role for facultative anaerobic bacteria in the initial steps of unsaturated LCFA biodegradation. Understanding this role is now imperative to optimize methane production from LCFA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El proyecto aborda el problema general de establecer una metodología para el cambio de escala de la producción de metabolitos en biorreactores de tanque agitado.En el desarrollo de procesos de producción de metabolitos a partir de microorganismos, el cambio de escala es particularmente complejo, dado que los microorganismos experimentan un continuo cambio en sus rutas metabólicas durante el período de producción. Esto hace que en el proceso del cambio de escala, las mayores dificultades se encuentren en el desarrollo del inóculo y problemas ocasionados por modificaciones en las características de transferencia de calor, masa y momento.Dentro de este contexto general se definen dos objetivos específicos. Estos son: el estudio de la producción de ácido itacónico por Aspergillus terreus y el de la producción de ácido hialurónico por Streptococcus equi. subsp. equi, con la finalidad de desarrollar una metodología de trabajo experimental y teórica que permita sistematizar el estudio del factibilidad técnico-económica de plantas de producción, vinculando la investigación del procesos a escala de laboratorio con la producción a mayor escala.La hipótesis de trabajo es que el estudio de la producción de Aspergillus terreus y de Streptococcus equi en un biorreactor de tanque agitado a escala de laboratorio permitirá establecer los parámetros que contribuirán a realizar el cambio de escala de su producción y esto será verificado experimentalmente.Los trabajos se realizarán utilizando un biorreactor a escala de laboratorio especialmente diseñado para este tipo de trabajo. Los resultados experimentales se interpretarán con técnicas estadísticas y matemáticas de diferente complejidad a efectos de establecer los criterios de cambio de escala y luego se realizarán experiencias en un biorreactor piloto con el objeto de verificar la metodología seleccionada.El desarrollo del proyecto permitirá:1.- obtener información técnica útil sobre la producción de ácido itacónico, el que tiene importantes aplicaciones en la industria del plástico. La producción por medio del Aspergillus terreus MJL05 se realizará utilizando glicerol como fuente de carbono, el que constituye el principal subproducto en los procesos de manufactura de biodiesel. De este modo se podrá analizar la factibilidad técnica de una ruta alternativa para emplear este subproducto.2.- obtener información técnica útil sobre la producción de ácido hialurónico, biopolímero de alto valor agregado con importantes aplicaciones en medicina, y contribuir así a realizar el cambio de escala de su producción.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the specific heat transfer coefficient (UA) and the volumetric mass transfer coefficient (kLa) play an important role for the design of biotechnological processes, different techniques were developed in the past for the determination of these parameters. However, these approaches often use imprecise dynamic methods for the description of stationary processes and are limited towards scale and geometry of the bioreactor. Therefore, the aim of this thesis was to develop a new method, which overcomes these restrictions. This new approach is based on a permanent production of heat and oxygen by the constant decomposition of hydrogen peroxide in continuous mode. Since the degradation of H2O2 at standard conditions only takes place by the support of a catalyst, different candidates were investigated for their potential (regarding safety issues and reaction kinetic). Manganese-(IV)-oxide was found to be suitable. To compensate the inactivation of MnO2, a continuous process with repeated feeds of fresh MnO2 was established. Subsequently, a scale-up was successfully carried out from 100 mL to a 5 litre glass bioreactor (UniVessel®)To show the applicability of this new method for the characterisation of bioreactors, it was compared with common approaches. With the newly established technique as well as with a conventional procedure, which is based on an electrical heat source, specific heat transfer coefficients were measured in the range of 17.1 – 24.8 W/K for power inputs of about 50 – 70 W/L. However, a first proof of concept regarding the mass transfer showed no constant kLa for different dilution rates up to 0.04 h-1.Based on this, consecutive studies concerning the mass transfer should be made with higher volume flows, due to more even inflow rates. In addition, further experiments are advisable, to analyse the heat transfer in single-use bioreactors and in larger common systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two experimental studies evaluated the effect of aerobic and membrane aeration changes on sludge properties, biological nutrient removal and filtration processes in a pilot plant membrane bioreactor. The optimal operating conditions were found at an aerobic dissolved oxygen set-point (DO) of 0.5mgO2L-1 and a membrane specific aeration demand (SADm) of 1mh-1, where membrane aeration can be used for nitrification. Under these conditions, a total flow reduction of 42% was achieved (75% energy reduction) without compromising nutrient removal efficiencies, maintaining sludge characteristics and controlled filtration. Below these optimal operating conditions, the nutrient removal efficiency was reduced, increasing 20% for soluble microbial products, 14% for capillarity suction time and reducing a 15% for filterability. Below this DO set-point, fouling increased with a transmembrane pressure 75% higher. SADm below 1mh-1 doubled the values of transmembrane pressure, without recovery after achieving the initial conditions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study the development of bioreactors for nitrifying water in closed system hatcheries of penaeid and non-penaeid prawns. This work is an attempt in this direction to cater to the needs of aquaculture industry for treatment and remediation of ammonia and nitrate in penaeid and non-penaeid hatcheries, by developing nitrifying bacteria allochthonous to the particular environment under consideration, and immobilizing them on an appropriately designed support materials configured as reactors. Ammonia toxicity is the major limiting factors in penaeid and non-penaeid hatchery systems causing lethal and sublethal effects on larvae depending on the pH values. Pressing need of the aquaculture industry to have a user friendly and economically viable technology for the removal of ammonia, which can be easily integrated to the existing hatchery designs without any major changes or modifications. Only option available now is to have biological filters through which water can be circulated for the oxidation of ammonia to nitrate through nitrite by a group of chemolithotrophs known as nitrifying bacteria. Two types of bioreactors have been designed and developed. The first category named as in situ stringed bed suspended bioreactor(SBSBR) was designed for use in the larval rearing tanks to remove ammonia and nitrite during larval rearing on a continuous basis, and the other to be used for nitrifying freshly collected seawater and spent water named as ex situ packed bed bioreactior(PBBR). On employing the two reactors together , both penaeid and non-penaeid larval rearing systems can be made a closed recirculating system at least for a season. A survey of literature revealed that the in situ stringed bed suspended reactor developed here is unique in its design, fabrication and mode of application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Centre for Aquatic Animal Health, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrification is the biological oxidation of ammonium, first to nitrite and then to nitrate by two groups of aerobic, chemolithotrophic bacteria belonging to the family Nitrobacteriaceae. The biological nitrification in municipal wastewater treatment is important in those cases were ammonia removal requirement specially exist. In a trickling filter or in an activated sludge system nitrification is rate limiting and thus necessitates longer detention time. The combined carbon oxidation-nitrification processes generally have low population of nitrifiers due to a high ratio of BOD to total nitrogen in the effluent. This necessitates, separate carbon and nitrogen oxidation processes, which thus minimizes wash out ofthe nitrifiers. Therefore, a separate stage nitrification has become essential to achieve faster and efficient removal of ammonia from the wastewater. The present work deals with the development of bio reactor for nitrifying of sewage as the tertiary process so that the treated wastewater can be used for irrigation, algal culture or fish culture

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two ammonia oxidizing (AMOPCU-1 and AMONPCU-1) and two nitrite oxidizing (NIOPCU-1 and NIONPCU-1) consortia for activating nitrifying bioreactors and thereby establishing nitrification in penaeid and non-penaeid hatchery systems were developed by enrichment. For further amplification of the consortia a simple medium having seawater (either salinity 30 ‰ or 15 ‰) as base, supplemented with NH4+-N/NO2--N and PO4- and pH adjusted to 8 was identified. During the amplification in a fermentor the consortia exhibited excessive wall growth and diminished their yield coefficient posing difficulty in harvesting the cells completely. The consortia consisted of both Gram negative and Gram-positive bacterial cells embedded in a mucilaginous matrix of glycocalyx - like material presumably composed of polysaccharides. The consortia besides being useful in activating nitrifying bioreactors developed for shrimp/prawn hatchery systems can also be used as bioaugmentors in the bioremediation of ammonia and nitrite toxicity in aquaculture systems.