4 resultados para Bioréacteur
Resumo:
Un bon fonctionnement du coeur humain est primordial pour maintenir une bonne qualité de vie. Cependant, lorsque le coeur est défaillant, certaines interventions chirurgicales s’avèrent nécessaires pour prolonger l’espérance de vie. Dans le cadre d’un projet multidisciplinaire reliant le génie mécanique avec le domaine biomédical, notre équipe travaille sur la fabrication de valves cardiaques conçues entièrement par génie tissulaire. Pour y parvenir, il est important d’obtenir des propriétés mécaniques optimales pour les tissus biologiques. Afin d’obtenir ces propriétés mécaniques, un outil important a été fabriqué lors d’une étude antérieure : le bioréacteur cardiaque. Le bioréacteur cardiaque permet de reproduire l’environnement physiologique du coeur, notamment les conditions de débit et de pression. Il est crucial de bien contrôler ces conditions, car celles-ci jouent un rôle important lors du conditionnement des substituts valvulaires. Toutefois, il est complexe de contrôler simultanément ces deux conditions de manière efficace. C’est pourquoi notre équipe s’est concentrée sur le développement d’une nouvelle stratégie de contrôle afin que le bioréacteur puisse reproduire le plus fidèlement possible l’environnement physiologique. Plusieurs techniques de contrôle ont été essayés jusqu’à maintenant. Par contre, leur précision était généralement limitée. Une nouvelle approche a donc été envisagée et est présentée dans ce mémoire. Cette nouvelle approche pour le contrôle du bioréacteur est basée sur un type d’algorithme bien connu mais encore très peu utilisé en contrôle : les algorithmes génétiques. Cette approche prometteuse nous a permis de produire des résultats dépassant tous ceux obtenus jusqu’à maintenant pour l’une des deux conditions, soit le débit physiologique.
Resumo:
La recherche de sources d’énergie fiables ayant un faible coût environnemental est en plein essor. L’hydrogène, étant un transporteur d’énergie propre et simple, pourrait servir comme moyen de transport de l’énergie de l’avenir. Une solution idéale pour les besoins énergétiques implique une production renouvelable de l’hydrogène. Parmi les possibilités pour un tel processus, la production biologique de l’hydrogène, aussi appelée biohydrogène, est une excellente alternative. L’hydrogène est le produit de plusieurs voies métaboliques bactériennes mais le rendement de la conversion de substrat en hydrogène est généralement faible, empêchant ainsi le développement d’un processus pratique de production d’hydrogène. Par exemple, lorsque l’hydrogène est produit par la nitrogénase sous des conditions de photofermentation, chaque molécule d’hydrogène constituée requiert 4 ATP, ce qui rend le processus inefficace. Les bactéries photosynthétiques non sulfureuses ont la capacité de croître sous différentes conditions. Selon des études génomiques, Rhodospirillum rubrum et Rhodopseudomonas palustris possèdent une hydrogénase FeFe qui leur permettrait de produire de l’hydrogène par fermentation anaérobie de manière très efficace. Il existe cependant très peu d’information sur la régulation de la synthèse de cette hydrogénase ainsi que sur les voies de fermentation dont elle fait partie. Une surexpression de cette enzyme permettrait potentiellement d’améliorer le rendement de production d’hydrogène. Cette étude vise à en apprendre davantage sur cette enzyme en tentant la surexpression de cette dernière dans les conditions favorisant la production d’hydrogène. L’utilisation de résidus organiques comme substrat pour la production d’hydrogène sera aussi étudiée.
Resumo:
Les substituts valvulaires disponibles actuellement comportent encore plusieurs lacunes. La disponibilité restreinte des allogreffes, les risques de coagulation associés aux valves mécaniques et la durabilité limitée des bioprothèses en tissu animal sont toutes des problématiques que le génie tissulaire a le potentiel de surmonter. Avec la méthode d’auto-assemblage, le seul support des cellules consiste en leur propre matrice extracellulaire, permettant la fabrication d’un tissu entièrement libre de matériau exogène. Ce projet a été précédé par ceux des doctorantes Catherine Tremblay et Véronique Laterreur, ayant respectivement développé une méthode de fabrication de valves moulées par auto-assemblage et une nouvelle version de bioréacteur. Au cours de cette maîtrise, le nouveau bioréacteur a été adapté à une utilisation stérile avec des tissus vivants et la méthode de fabrication de valves moulées a été modifiée puis éprouvée avec la production de 4 prototypes. Ces derniers n’ont pas permis d’obtenir des performances satisfaisantes en bioréacteur, motivant la conception d’une nouvelle méthode. Plutôt que de tenter de répliquer la forme native des valves cardiaques, des études récentes ont suggéré une géométrie tubulaire. Cela permettrait une fabrication simplifiée, une implantation rapide, et un encombrement minimal en vue d’opérations percutanées. Cette approche minimaliste s’accorde bien avec la méthode d’auto-assemblage, qui a déjà été utilisée pour la production de vaisseaux de petits diamètres. Un total de 11 tubes ont été produits par l’enroulement de feuillets fibroblastiques auto-assemblés, puis ont été transférés sur des mandrins de diamètre inférieur, leur permettant de se contracter librement. La caractérisation de deux tubes contrôles a démontré que cette phase de précontraction était bénéfique pour les propriétés du tissu en plus de prévenir la contraction en bioréacteur. Les prototypes finaux pouvaient supporter un écoulement physiologique pulmonaire. Cette nouvelle méthode montre que le procédé d’auto-assemblage a le potentiel d’être utilisé pour fabriquer des valves cardiaques tubulaires.
Resumo:
Il existe un besoin clinique pour les prothèses vasculaires de faible diamètre (< 6 mm), notamment pour effectuer des pontages vasculaires. Les prothèses synthétiques de faible diamètre, n’ayant pas d’endothélium, sont sujettes à la thrombose. Ainsi les chirurgiens préfèrent utiliser les vaisseaux autologues des patients. Pour cela, la veine saphène est de loin la plus utilisée. Cependant, de nombreux patients n’ont pas de vaisseaux adéquats, soit parce qu’ils ont déjà été utilisés, soit parce qu’ils sont malades. Pour pallier ce manque, le LOEX a développé un substitut vasculaire reconstruit en laboratoire par la méthode d’auto-assemblage du génie tissulaire. Ces substituts, faits à partir de cellules humaines, ont une longue période de production et ne peuvent être faits à l’avance ni préservés. L’objectif principal de cette thèse est le développement d’une prothèse vasculaire de faible diamètre facilitant le transfert du laboratoire vers la clinique. S’inspirant de travaux antérieurs, les travaux focalisent sur des prothèses obtenues à partir de fibroblastes dermiques humains puis décellularisés. Comme la réponse immunitaire se fait principalement contre les cellules et non pas contre la matrice extracellulaire, la décellularisation permet de gagner une compatibilité immunitaire inter-individu, voire inter-espèce. Ainsi, des prothèses ont été implantées dans six rats pendant six mois sans immunosuppression avec un taux de succès de 83%. Les explants présentaient une infiltration cellulaire suggérant la formation d’une nouvelle media recouverte d’un endothélium. Par ailleurs, nous avons démontré qu’il était également possible de produire des prothèses de grandeur et diamètre adéquats pour une utilisation clinique. Ces prothèses ont été préservées durant trois mois sans altérer leurs propriétés mécaniques. Nous avons également endothélialisé des vaisseaux qui ont ensuite été conditionnés en bioréacteur durant une semaine. Le processus entraînait une compaction de la matrice extracellulaire et un gain dans la résistance à la traction du matériau. En conclusion, les prothèses vasculaires décellularisées offrent deux avantages majeurs facilitant ainsi les essais précliniques et accélérant leur transfert du laboratoire vers les patients.