971 resultados para Bioplastics,Toy sector,Sustainable materials
Resumo:
Development and characterization of biopolymers was done in AIJU’s laboratories. AIJU, Technological Institute for children’s products and leisure is based in Spain. The work has the aim to study qualities and characteristics of bioplastics’ blends, in order to design where improvements can be executed. Biopolymers represent a sector with great development possibilities because they combine high technical potential and eco-sustainability. Nowadays, plastic pollution has becoming increasingly concerning, particularly in terms of management of waste. Bioplastics provide an alternative for the disposal of products, reducing the volume of waste and enhancing the end of life recovery. Despite the growing interest in biopolymers there is some gaps that need be filled. The main objective on this work, is the optimization of bioplastics mechanical properties, to find suitable substitutes, as similar as possible to conventional plastics. Firstly, investigations on processability of biomaterials has been deepen since the project deals with toy manufacturing’s sector. Thus, starting from laboratory scale the work aspires to expand industrially. By working with traditional machines, it was notable that, with some limited modifications, the equipment can perform the same functions. Therefore, operational processes do not emerge as an obstacle to the production chain. Secondly, after processing bio-blends, they are characterized by thermal tests (melt flow index, differential scanning calorimetry-DSC, thermogravimetry-TGA) and mechanical tests (traction and flexural tests, Charpy impact, SHORE D hardness and density). While the compatibility does not show relevant results, mechanical improvements has been visualized with addition of more ductile materials. The study was developed by inclusion of sustainable additive VINNEX® to blends. The thesis has highlighted that integration of more flexible materials provides elasticity without compromising bioplastics’ properties.
Resumo:
Product manufacturers face increasing environmental and human health regulations with certain regulations targeting specific chemicals of concern that must be removed from the supply chain. This study examines a green chemistry approach to choosing between flame retardant alternatives in electronic products during the design phase of product development. An aggregated score based on five criteria was generated for each flame retardant. To address subjectivity and cognitive bias concerns probabilistic sensitivity analysis was applied to the weighting factors used to generate the scores to examine the reliability of the results. The highest scoring flame retardants based on the comprehensive green chemistry approach were different from the flame retardants chosen using cost as the primary selection criteria.
Resumo:
The development of biopolymers has been rapid in recent years and the range of available bioplastics is increasing continuously, driven by a growing demand for sustainable solutions. There are several key drivers behind this growth. The oil reservoirs are decreasing which is causing a price increase for the traditional plastic materials and therefore the gap to bioplastics’ price is getting smaller. In addition, other environmental topics, such as waste disposal and green production, have become more and more important factors for institutes, companies and consumers. Legislation and directives have to be taken into account as well in decision making concerning different packaging materials. The new environmental law with waste disposal responsibility will also have an effect on the packaging business. Therefore a need has risen to study closer the current offering closer of bio-based materials that could be used in chocolate packaging. In this Master’s Thesis the bioplastics’, and especially biodegradable materials’ technical properties and their development, availability, possible existing products in the markets, waste disposal possibilities and consumers attitude towards environmental friendly packaging is studied. This is a case study where the offering of biodegradable materials was investigated during March 2013 for Fazer Confectionary.
Resumo:
If we look back in time at the history of humanity, we can state that our generation is living an era of outstanding efficiency and progress because of globalization and global competition, even if this is resulting in the rapid depletion of energy sources and raw materials. The environmental impact of non-biodegradable plastic wastes is of increasing global concern: nowadays, imagining a world without synthetic plastics seems impossible, though their large-scale production and their extensive use have only spread since the end of the World War II. In recent years, the demand for sustainable materials has increased significantly and, with a view to circular economy, research has also focused on the enhancement and subsequent reuse of waste materials produced by industrial processing, intensive farming and the agricultural sector. Plastic polymers have been the most practical and economical solution for decades due to their low cost, prompt availability and excellent optical, mechanical and barrier properties. Biodegradable polymers could replace them in many applications, thus reducing the problems of traditional plastics disposability and the dependence on petroleum. Natural biopolymers are in fact characterized by a high biocompatibility and biodegradability and have already prompted research in the field of regenerative medicine. During my PhD, my goal was to use natural polymers from sustainable sources as raw materials to produce biomaterials, which are materials designed to interface with biological systems to evaluate, support or replace any tissue, organ, or function of the body. I focused on the use of the most abundant biopolymers in nature to produce biomaterials in the form of films, scaffolds and cements. After a complete characterization, the materials were proposed for suitable applications in different fields, from tissue engineering to cosmetics and food packaging. Some of the obtained results were published on international scientific and peer-reviewed journals.
Resumo:
Dissertação de mestrado Internacional em Sustentabilidade do Ambiente Construído
Resumo:
Disseny d’un projecte que controli la gestió d’ubicacions del magatzem d’una empresa del sector de materials de construcció, concretament de “Materials Brecor”, una empresa líder de la zona compresa entre la costa brava sud i el maresme nord. L’Objectiu principal és concebre un projecte que permeti controlar en temps real tant l’entrada com la sortida de mercaderies, a més a més de poder consultar la ubicació de cadascuna d’elles dins el magatzem. Aconseguint millorar els temps de resposta en el moment de localitzar l’article demanat i la seva posterior expedició al client
Resumo:
Disseny d’un projecte que controli la gestió d’ubicacions del magatzem d’una empresa del sector de materials de construcció, concretament de “Materials Brecor”, una empresa líder de la zona compresa entre la costa brava sud i el maresme nord. L’Objectiu principal és concebre un projecte que permeti controlar en temps real tant l’entrada com la sortida de mercaderies, a més a més de poder consultar la ubicació de cadascuna d’elles dins el magatzem. Aconseguint millorar els temps de resposta en el moment de localitzar l’article demanat i la seva posterior expedició al client
Resumo:
El departamento del Guainía, comprende una región con un alto potencial de desarrollo económico y social para el país debido a su biodiversidad y a su riqueza cultural. Sin embargo, ha sido un departamento que no ha presentado un desarrollo creciente de su economía debido a factores como: el aislamiento, la dependencia del estado, la limitada inversión en tecnología e infraestructura vial y la falta de capacitación en el capital humano, los cuales incrementa los costos logísticos y dificulta el desarrollo microempresarial. Es así, como en la actualidad la economía de la región se centra en los sectores primarios y en el sector público, los cuales presentan un mínimo valor agregado y de calidad para la zona. Teniendo en cuenta, la situación actual del departamento dentro del plan de desarrollo económico del Guainía y las apuestas productivas para la Amazorinoquia, se plantearon los lineamientos económicos y los ejes transversales de los sectores con mayor potencial de desarrollo para el Guainía. El turismo, el Bio-comercio y los mercados verdes, son los sectores analizados que podrían mejorar las condiciones socioeconómicas del departamento. De este modo, y teniendo en cuenta las condiciones de la región, el sector turístico, es un sector con un alto potencial de desarrollo que impacta a la economía en general y propende por el desarrollo social y el cuidado del medio ambiente. Por ello, la economía debería enfocar sus esfuerzos en el desarrollo de dicho sector, a través de un clúster del sector turístico que integre las iniciativas de los empresarios locales, las instituciones públicas y los gremios, promoviendo la competitividad, la innovación, la generación de sinergia y la promoción del departamento como centro eco-turístico de la Amazorinoquia colombiana.
Análise granulométrica do compósito cimentício produzido com adição de resíduos de madeira e escória
Resumo:
Since the early twenty-first century, the construction sector has been the second largest on the rise in the Brazilian industrial sector, with a growth of 1.4% in 2012, and is likely to remain at this level for a long time. However, unlike decades ago, the industry has been seeking in its manufacturing process, sustainable materials, encompassing in their works the concept of sustainability. Thus, the timber sector seeks to satisfy a market increasingly demanding, innovating techniques and utilization being less aggressive to the environment. The purpose of this study was to produce and evaluate the mechanical strength of the composite cement with the addition of wood residues and slag low oven. Therefore, it was made 42 specimen cement-slag-wood, carried out in two steps. Since at the first, it was varied only the slag particle size, and at the second, through the best result of the previous step, it was varied the wood particles granulometry. The mechanical performance of the composite was evaluated by the results obtained in the compression test and the physical test for determining the density of the material. In the first step of the process can be concluded that the best result was achieved with the use of slag particles retained on the 60 mesh sieve. In the second phase of the study concluded that the best results were achieved with wood particles with the large particles, i.e. particles retained on the 10 mesh sieve. Both in the first and in the second step it can be seen that there has been the influence of the particle size of the waste materials. With the obtained results, could be evaluated that the use of waste for the production of cement-slag-wood composite showed lower performance when compared to the results obtained in studies without the use of waste. However, some applications are feasible to be performed with the use of composite wood-cement-slag
Resumo:
There is broad international agreement that investment flows to the agricultural sector in developing countries need to be increased. But there is also agreement that such investments need to be sustainable. For being sustainable, they must not only be beneficial to the public economy, but also to rural households and to the environment in the short and the long run. Whether sustainable investments take place, not least depends on the legal framework within which these investments are situated. This is true for the domestic legal frameworks of both the home country and of the host country of the investment. But also the international legal frameworks in which home and host states are embedded set either positive or negative incentives for investments to be sustainable. The paper presents an overview on regulatory frameworks which come to focus in this regard. It then elaborates on international agricultural trade regulation, by assuming that sustainable investments in agriculture presume a ‘sustainable trade regime’. By doing so, the paper presents parts of the debate about a sustainable agricultural trade regime, as it has been resumed and further developed by the author in recent years. Key words. Agricultural sector, sustainable investment, regulatory environment, sustainable trade regime.
Resumo:
This work mainly arises from the necessity to support the rapid introduction of different biobased polymers that the industrial sector has been facing lately. Indeed, while considerable efforts are being made to find environmentally and economically sustainable materials, less attention is paid to their need to be properly compounded to fulfil increasingly rigorous technical and quality requirements. Therefore, there is a strong demand for the development of a novel generation of compatible additives able to improve the properties of biobased polymers while respecting sustainability. With this in mind, a new class of biobased plasticizers is herein proposed. Five different ketal-diesters were selectively synthesized starting from levulinic acid, a promising renewable chemical platform. These molecules were added to poly(vinyl chloride) as model polymer to test their plasticizing effectiveness. Complete morphological, thermal and viscoelastic characterizations showed a clear correlation between the structural features of the ketal-esters and the properties of the material. In addition, no significant leaching was found in both hydrophilic and lipophilic environments. Importantly, the proposed ketal-diesters performed comparably and, in some cases, even better than commercial plasticizers. The same molecules were then added to bacterial poly(3-hydroxybutyrate), a semicrystalline polyester characterized by poor thermal and mechanical properties. Morphology assessments showed no phase separation and the plasticizing effectiveness was confirmed by thermal and viscoelastic analyses, while leaching tests showed low extraction values. Readily usable fractions with controlled structure and tailored properties were obtained from highly heterogeneous industrial grade Kraft lignin. These fractions were then added to poly(vinyl alcohol). Promising preliminary results in terms of compatibility were achieved, with thermograms showing only one glass transition temperature. Finally, a fully biobased glycerol-trilevulinate was successfully synthesized by means of a mild and solvent-free route. Its plasticizing effectiveness was evaluated on poly(vinyl chloride), showing a significant decrease of the glass transition temperature of the material.
Resumo:
Epoxy resins are widely used in many applications, such as paints, adhesives and matrices for composites materials, since they present the possibility to be easily and conveniently tailored in order to display a unique combination of characteristics. In literature, various examples of bio-based epoxy resins produced from a wide range of renewable sources can be found. Nevertheless, the toxicity and safety of curing agents have not been deeply investigated and it was observed that all of them still present some environmental drawback. Therefore, the development of new environmentally friendly fully bio-based epoxy systems is of great importance for designing green and sustainable materials. In this context, the present project aims at further exploring the possibility of using bio-based compounds as curing agents for epoxy resin precursors. A preliminary evaluation of several amine-based compounds demonstrated the feasibility of using Adenine as epoxy resin hardener. In order to better understand the crosslinking mechanism, the reaction of Adenine with the mono-epoxy compound Glycidyl 2-methylphenyl ether (G2MPE), was study by 1H-NMR analysis. Then Adenine was investigated as hardener of Diglycidil ether of bisphenol A (DGEBA), which is the simplest epoxy resin based on bisphenol A, in order to determine the best hardener/resin stoichiometric ratio, and evaluate the crosslinking kinetics and conversion and the final mechanical properties of the cured resin. Then, Adenine was tested as hardener of commercial epoxy resins, in particular the infusion resin Elan-tron® EC 157 (Elantas), the impregnation resin EPON™ Resin 828 (Hexion) and the bio-based resin SUPER SAP® CLR (Entropyresins). Such systems were used for the production of composites materials reinforced with chopped recycled carbon fibers and natural fibers (flax and jute). The thermo-mechanical properties of these materials have been studied in comparison with those ones of composites obtained with the same thermosetting resin reinforced with chopped virgin carbon fibers.
Resumo:
The environmental problems caused by human activity are one of the main themes of debate of the last Century. As regard plastics, the use of non-renewable sources together with the accumulation of waste in natural habitats are causing serious pollution problems. For this reason, a continuously growing interest is recorded around sustainable materials, potential candidate for the replacement of traditional recalcitrant plastics. Promising results have been obtained with biopolymers, in particular with the class of biopolyesters. Their potential biodegradability and biobased nature is particularly interesting mainly for food packaging, where the multilayer systems normally used and the contamination by organic matter create severe recycling limits. In this framework, the present research has been conducted with the aim of synthetizing, modifying and characterizing biopolymers for food packaging application. New bioplastics based on monomers derived from renewable resources were successfully synthetized by two-step melt polycondensation and chain extension reaction following the “Green chemistry” principles. Moreover, well-known biopolyesters have been modified by blending or copolymerization, both resulting effective techniques to ad hoc tune the polymer final characteristics. The materials obtained have been processed and characterized from the chemical, structural, thermal and mechanical point of view; more specific characterizations as compostability tests, surface hydrophilicity film evaluation and barrier property measurements were conducted.
Resumo:
The increasing environmental global regulations have directed scientific research towards more sustainable materials, even in the field of composite materials for additive manufacturing. In this context, the presented research is devoted to the development of thermoplastic composites for FDM application with a low environmental impact, focusing on the possibility to use wastes from different industrial processes as filler for the production of composite filaments for FDM 3D printing. In particular carbon fibers recycled by pyro-gasification process of CFRP scraps were used as reinforcing agent for PLA, a biobased polymeric matrix. Since the high value of CFs, the ability to re-use recycled CFs, replacing virgin ones, seems to be a promising option in terms of sustainability and circular economy. Moreover, wastes from different agricultural industries, i.e. wheat and rice production processes, were valorised and used as biofillers for the production of PLA-biocomposites. The integration of these agricultural wastes into PLA bioplastic allowed to obtain biocomposites with improved eco-sustainability, biodegradability, lightweight, and lower cost. Finally, the study of novel composites for FDM was extended towards elastomeric nanocomposite materials, in particular TPU reinforced with graphene. The research procedure of all projects involves the optimization of production methods of composite filaments with a particular attention on the possible degradation of polymeric matrices. Then, main thermal properties of 3D printed object are evaluated by TGA, DSC characterization. Additionally, specific heat capacity (CP) and Coefficient of Linear Thermal Expansion (CLTE) measurements are useful to estimate the attitude of composites for the prevention of typical FDM issues, i.e. shrinkage and warping. Finally, the mechanical properties of 3D printed composites and their anisotropy are investigated by tensile test using distinct kinds of specimens with different printing angles with respect to the testing direction.