35 resultados para Biopharmaceuticals
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
This work aimed at the development of a (bio)polymeric monolithic support for biopharmaceuticals purification and/or capture. For that, it was assured that functional groups on its surface were ready to be involved in a plethora of chemical reactions for incorporation of the desired and most suitable ligand. Using cryogelation as preparation method a screening on multiple combinations of materials was performed in order to create a potentially efficient support with the minimal footprint, i.e. a monolithic support with reasonable mechanical properties, highly permeable, biocompatible, ready to use, with gravitational performance and minimal unspecific interactions towards the target molecules, but also biodegradable and produced from renewable materials. For the pre-selection all monoliths were characterized physico-chemically and morphologically; one agarose-based and two chitosan-based monoliths were then subjected to further characterizations before and after their modification with magnetic nanoparticles. These three specimens were finally tested towards adenovirus and the recovery reached 84% for the chitosan-GMA plain monolith prepared at -80°C. Monoliths based on chitosan and PVA were prepared in the presence and absence of magnetic particles, and tested for the isolation of GFP directly from crude cellular extracts. The affinity ligand A4C7 previously selected for GFP purification was synthesized on the monolith. The results indicated that the solid-phase synthesis of the ligand directly onto the monolith might require optimization and that the large pores of the monoliths are unsuitable for the purification of small proteins, such as GFP.
Resumo:
Biotekniikkaa pidetään yhtenä lupaavimmista nykyään tunnetuista teknologioista. Biotekniikan alalta erityisesti uusien lääkeaineiden kehittely on saavuttanut huomiota julkisuudessa. Biotekniikkaa lääkeaineiden kehittämiseen soveltavien yritysten määrä on kasvanut nopeasti viimeisen vuosikymmenen aikana, mutta tämänhetkiset tulokset osoittavat, että yritykset voisivat hyötyä riskien hallintaan ja kaupallistamiseen liittyvien prosessien kehittämisestä. Tutkielma keskittyy biolääkkeiden kaupallistamiseen, erityisesti suomalaisten uusien biolääkeyritysten kannalta. Tutkielma jakaantuu kahteen osaan: ensimmäinen osa tutkii kaupallistamista käsitteenä ja biolääkeliiketoiminnan erityispiirteitä. Toinen osa keskittyy kaupallistamisen empiiriseen tutkimukseen, joka kattaa viisi suomalaista uutta biolääkeyritystä. Empiirisen osan tavoitteena oli tunnistaa ne keinot, jotka auttavat menestyksekkään kaupallistamisprosessin luomisessa tuotekehitysvaiheen läpäisseelle lääkeaineelle. Saavutetut tulokset voidaan tiivistää neljän kriittisen menestystekijän ympärille, jotka ovat 1) tuote, 2) viestintä, 3) uskottavuus ja 4) yhteistyökumppanin valinta. Ensimmäinen menestystekijä on ainutlaatuinen biolääke, joka parantaa kansantaloudellisesti merkittäviä tauteja. Toisen menestystekijän avulla yritys viestittää uudesta ainutlaatuisesta tuotteestaan mahdollisille yhteistyökumppaneilleen. Kolmas menestystekijä kohdistuu yrityksen uskottavuuteen uutena korkean teknologian biolääkeaineiden kehittäjänä. Uskottavuustekijä on erityisen tärkeä suhteiden luomisessa kansainvälisiin lääkeyrityksiin. Neljäs tekijä keskittyy yhteistyökumppanin valintaan, joka alan erityisluonteesta johtuen on tärkeä uudelle biolääkeyritykselle. Viimeiseksi havaittiin, että uusi biolääkeyritys virtuaalisen rakenteensa vuoksi tarvitsee hyvät johdon suhdemarkkinointikyvyt.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Complex glycoprotein biopharmaceuticals, such as follicle stimulating hormone (FSH), erythropoietin and tissue plasminogen activator consist of a range of charge isoforms due to the extent of sialic acid capping of the glycoprotein glycans. Sialic acid occupies the terminal position on the oligosaccharide chain, masking the penultimate sugar residue, galactose from recognition and uptake by the hepatocyte asialoglycoprotein receptor. It is therefore well established that the more acidic charge isoforms of glycoprotein biopharmaceuticals have higher in vivo potencies than those of less acidic isoforms due to their longer serum half-life. Current strategies for manipulating glycoprotein charge isoform profile involve cell engineering or altering bioprocesss parameters to optimise expression of more acidic or basic isoforms, rather than downstream separation of isoforms. A method for the purification of a discrete range of bioactive recombinant human FSH (rhFSH) charge isoforms based on Gradiflow(TM) preparative electrophoresis technology is described. Gradiflow(TM) electrophoresis is scaleable, and incorporation into glycoprotein biopharmaceutical production bioprocesses as a potential final step facilitates the production of biopharmaceutical preparations of improved in vivo potency. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Chinese Hamster Ovary (CHO) cells are widely used for the large scale production of recombinant biopharmaceuticals. Growth of the CHO-K1 cell line has been demonstrated in serum-free medium containing insulin, transferrin and selenium. In an attempt to get autocrine growth in protein-free medium, DNA coding for insulin and transferrin production was transfected into CHO-K1 cells. Transferrin was expressed well, with clones secreting approximately 1000 ng/10(6)cells/24h. Insulin was poorly expressed, with rates peaking at 5 ng/10(6)cells/24h. Characterisation of the secreted insulin indicated that the CHO cells were incompletely processing the insulin molecule. Site-directed mutagenesis was used to introduce a furin (prohormone converting enzyme) recognition sequence into the insulin molecule, allowing the production of active insulin. However, the levels were still too low to support autocrine growth. Further investigations revealed insulin degrading activity (presumably due to the presence of insulin degrading enzymes) in the cytoplasm of CHO cells. To overcome these problems insulin-like growth factor I (instead of insulin) was transfected into the cells. IGF-1 was completely processed and expressed at rates greater than 500 ng/10(6)cells/24h. In this paper we report autonomous growth of the transfected CHO-K1 cell line expressing transferrin and IGF-1 in protein-free medium without the addition of exogenous growth factors. Growth rates and final cell densities of these cells were identical to that of the parent cell line CHO-K1 growing in insulin, transferrin, and selenium supplemented serum-free media.
Resumo:
The development of biopharmaceutical manufacturing processes presents critical constraints, with the major constraint being that living cells synthesize these molecules, presenting inherent behavior variability due to their high sensitivity to small fluctuations in the cultivation environment. To speed up the development process and to control this critical manufacturing step, it is relevant to develop high-throughput and in situ monitoring techniques, respectively. Here, high-throughput mid-infrared (MIR) spectral analysis of dehydrated cell pellets and in situ near-infrared (NIR) spectral analysis of the whole culture broth were compared to monitor plasmid production in recombinant Escherichia coil cultures. Good partial least squares (PLS) regression models were built, either based on MIR or NIR spectral data, yielding high coefficients of determination (R-2) and low predictive errors (root mean square error, or RMSE) to estimate host cell growth, plasmid production, carbon source consumption (glucose and glycerol), and by-product acetate production and consumption. The predictive errors for biomass, plasmid, glucose, glycerol, and acetate based on MIR data were 0.7 g/L, 9 mg/L, 0.3 g/L, 0.4 g/L, and 0.4 g/L, respectively, whereas for NIR data the predictive errors obtained were 0.4 g/L, 8 mg/L, 0.3 g/L, 0.2 g/L, and 0.4 g/L, respectively. The models obtained are robust as they are valid for cultivations conducted with different media compositions and with different cultivation strategies (batch and fed-batch). Besides being conducted in situ with a sterilized fiber optic probe, NIR spectroscopy allows building PLS models for estimating plasmid, glucose, and acetate that are as accurate as those obtained from the high-throughput MIR setup, and better models for estimating biomass and glycerol, yielding a decrease in 57 and 50% of the RMSE, respectively, compared to the MIR setup. However, MIR spectroscopy could be a valid alternative in the case of optimization protocols, due to possible space constraints or high costs associated with the use of multi-fiber optic probes for multi-bioreactors. In this case, MIR could be conducted in a high-throughput manner, analyzing hundreds of culture samples in a rapid and automatic mode.
Resumo:
Dissertation presented to obtain a Ph.D. degree in Engineering and Technology Sciences, Biotechnology at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
Dissertation presented to obtain the Ph.D degree in Engineering and Technology Sciences-Biotechnology
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Viral vectors are playing an increasingly important role in the vaccine and gene therapy elds. The broad spectrum of potential applications, together with expanding medical markets, drives the e orts to improve the production processes for viral vaccines and viral vectors. Developing countries, in particular, are becoming the main vaccine market. It is thus critical to decrease the cost per dose, which is only achievable by improving the production process. In particular advances in the upstream processing have substantially increased bioreactor yields, shifting the bioprocess bottlenecks towards the downstream processing. The work presented in this thesis aimed to develop new processes for adenoviruses puri cation. The use of state-of-the-art technology combined with innovative continuous processes contributed to build robust and cost-e ective strategies for puri cation of complex biopharmaceuticals.(...)
Resumo:
Part of the results presented in this thesis were published in the following reference (DOI 10.1016/j.cell.2015.08.055): Wenwen Zeng*, Roksana M. Pirzgalska*, Mafalda M.A. Pereira, Nadiya Kubasova, Andreia Barateiro, Elsa Seixas, Yi-Hsueh Lu, Albina Kozlova, Henning Voss, Gabriel G. Martins, Jeffrey M. Friedman and Ana I. Domingos. Sympathetic Neuro-adipose Connections Mediate Leptin-Driven Lipolysis. Cell 163, 84-94 (2015). The work was also presented through poster presentations at iMED Conference 6.0 (Lisbon, 2014), Sociedade Portuguesa de Bioquímica Meeting (Coimbra, 2014) and Sociedade Portuguesa de Neurociências Meeting (Póvoa de Varzim, 2015).