991 resultados para Biometric identification
Resumo:
The identification of tree species is a key step for sustainable management plans of forest resources, as well as for several other applications that are based on such surveys. However, the present available techniques are dependent on the presence of tree structures, such as flowers, fruits, and leaves, limiting the identification process to certain periods of the year Therefore, this article introduces a study on the application of statistical parameters for texture classification of tree trunk images. For that, 540 samples from five Brazilian native deciduous species were acquired and measures of entropy, uniformity, smoothness, asymmetry (third moment), mean, and standard deviation were obtained from the presented textures. Using a decision tree, a biometric species identification system was constructed and resulted to a 0.84 average precision rate for species classification with 0.83accuracy and 0.79 agreement. Thus, it can be considered that the use of texture presented in trunk images can represent an important advance in tree identification, since the limitations of the current techniques can be overcome.
Resumo:
Programa de doctorado: Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería
Effectiveness Of Feature Detection Operators On The Performance Of Iris Biometric Recognition System
Resumo:
Iris Recognition is a highly efficient biometric identification system with great possibilities for future in the security systems area.Its robustness and unobtrusiveness, as opposed tomost of the currently deployed systems, make it a good candidate to replace most of thesecurity systems around. By making use of the distinctiveness of iris patterns, iris recognition systems obtain a unique mapping for each person. Identification of this person is possible by applying appropriate matching algorithm.In this paper, Daugman’s Rubber Sheet model is employed for irisnormalization and unwrapping, descriptive statistical analysis of different feature detection operators is performed, features extracted is encoded using Haar wavelets and for classification hammingdistance as a matching algorithm is used. The system was tested on the UBIRIS database. The edge detection algorithm, Canny, is found to be the best one to extract most of the iris texture. The success rate of feature detection using canny is 81%, False Accept Rate is 9% and False Reject Rate is 10%.
Resumo:
This paper addresses biometric identification using large databases, in particular, iris databases. In such applications, it is critical to have low response time, while maintaining an acceptable recognition rate. Thus, the trade-off between speed and accuracy must be evaluated for processing and recognition parts of an identification system. In this paper, a graph-based framework for pattern recognition, called Optimum-Path Forest (OPF), is utilized as a classifier in a pre-developed iris recognition system. The aim of this paper is to verify the effectiveness of OPF in the field of iris recognition, and its performance for various scale iris databases. The existing Gauss-Laguerre Wavelet based coding scheme is used for iris encoding. The performance of the OPF and two other - Hamming and Bayesian - classifiers, is compared using small, medium, and large-scale databases. Such a comparison shows that the OPF has faster response for large-scale databases, thus performing better than the more accurate, but slower, classifiers.
Resumo:
The objective of this study was to demonstrate the effectiveness of rugoscopy as a human identification method, even when the patient is submitted to rapid palatal expansion, which in theory would introduce doubt. With this intent, the Rugoscopic Identity was obtained for each subject using the classification formula proposed by Santos based on the intra-oral casts made before and after treatment from patients who were subjected to palatal expansion. The casts were labeled with the patients' initials and randomly arranged for studying. The palatine rugae kept the same patterns in every case studied. The technical error of the intra-evaluator measurement provided a confidence interval of 95%, making rugoscopy a reliable identification method for patients who were submitted to rapid palatal expansion, because even in the presence of intra-oral changes owing to the use of palatal expanders, the palatine rugae retained the biological and technical requirements for the human identification process. © 2012 American Academy of Forensic Sciences.
Resumo:
The use of electrocardiogram as biometric has raised attention in the last decade and a wide variety of ECG features were explored to verify the feasibility of such a signal. In this work the authors aim to describe a simple template based approach to the electrocardiographic biometric identification using the morphology of individual's heartbeat. The developed algorithm was tested on different recordings made available in the Physionet public database Fantasia: two different sets of heartbeats were extracted from individual recordings one was used for the template building while the second for the tests. The performances of the algorithm are encouraging with a true acceptance rate of 99.4%, however, the procedure needs to be tested on different recordings of the same individual, or during the course of a whole day or physical activity. © 2013 IEEE.
Resumo:
Identification of humans via ECG is being increasingly studied because it can have several advantages over the traditional biometric identification techniques. However, difficulties arise because of the heartrate variability. In this study we analysed the influence of QT interval correction on the performance of an identification system based on temporal and amplitude features of ECG. In particular we tested MLP, Naive Bayes and 3-NN classifiers on the Fantasia database. Results indicate that QT correction can significantly improve the overall system performance. © 2013 IEEE.
Resumo:
The use of human brain electroencephalography (EEG) signals for automatic person identi cation has been investigated for a decade. It has been found that the performance of an EEG-based person identication system highly depends on what feature to be extracted from multi-channel EEG signals. Linear methods such as Power Spectral Density and Autoregressive Model have been used to extract EEG features. However these methods assumed that EEG signals are stationary. In fact, EEG signals are complex, non-linear, non-stationary, and random in nature. In addition, other factors such as brain condition or human characteristics may have impacts on the performance, however these factors have not been investigated and evaluated in previous studies. It has been found in the literature that entropy is used to measure the randomness of non-linear time series data. Entropy is also used to measure the level of chaos of braincomputer interface systems. Therefore, this thesis proposes to study the role of entropy in non-linear analysis of EEG signals to discover new features for EEG-based person identi- cation. Five dierent entropy methods including Shannon Entropy, Approximate Entropy, Sample Entropy, Spectral Entropy, and Conditional Entropy have been proposed to extract entropy features that are used to evaluate the performance of EEG-based person identication systems and the impacts of epilepsy, alcohol, age and gender characteristics on these systems. Experiments were performed on the Australian EEG and Alcoholism datasets. Experimental results have shown that, in most cases, the proposed entropy features yield very fast person identication, yet with compatible accuracy because the feature dimension is low. In real life security operation, timely response is critical. The experimental results have also shown that epilepsy, alcohol, age and gender characteristics have impacts on the EEG-based person identication systems.
Resumo:
In this present work, we are proposing a characteristics reduction system for a facial biometric identification system, using transformed domains such as discrete cosine transformed (DCT) and discrete wavelets transformed (DWT) as parameterization; and Support Vector Machines (SVM) and Neural Network (NN) as classifiers. The size reduction has been done with Principal Component Analysis (PCA) and with Independent Component Analysis (ICA). This system presents a similar success results for both DWT-SVM system and DWT-PCA-SVM system, about 98%. The computational load is improved on training mode due to the decreasing of input’s size and less complexity of the classifier.
Resumo:
This paper discusses the RFID implants for identification via a sensor network. Brain-computer implants linked in to a wireless network. Biometric identification via body sensors is also discussed. The use of a network as a means for remote and distance monitoring of humans opens up a range of potential uses. Where implanted identification is concerned this immediately offers high security access to specific areas by means of only an RFID device. If a neural implant is employed then clearly the information exchanged with a network can take on a much richer form, allowing for identification and response to an individual's needs based on the signals apparent on their nervous system.
Resumo:
Este trabalho teve como objetivo analisar o uso da biometria no serviço público como forma de redução das oportunidades de fraudes e melhoria da gestão de pessoas na administração pública. Para isso, foi feita uma comparação semiestruturada da experiência internacional e um estudo de caso aprofundado do projeto Identidade Funcional, desenvolvido pelo governo do Estado do Rio de Janeiro. As lições mais importantes, derivadas destas experiências, estão refletidas em um modelo de projeto para formação de uma base biométrica capaz de garantir a integridade do cadastro de pagamento dos salários e benefícios de previdência da administração pública. O modelo tomou por referência a prefeitura de Duque de Caxias, porém foi estruturado de modo a ser viável em municípios do mesmo porte.
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
In this paper, we analyze the performance of several well-known pattern recognition and dimensionality reduction techniques when applied to mass-spectrometry data for odor biometric identification. Motivated by the successful results of previous works capturing the odor from other parts of the body, this work attempts to evaluate the feasibility of identifying people by the odor emanated from the hands. By formulating this task according to a machine learning scheme, the problem is identified with a small-sample-size supervised classification problem in which the input data is formed by mass spectrograms from the hand odor of 13 subjects captured in different sessions. The high dimensionality of the data makes it necessary to apply feature selection and extraction techniques together with a simple classifier in order to improve the generalization capabilities of the model. Our experimental results achieve recognition rates over 85% which reveals that there exists discriminatory information in the hand odor and points at body odor as a promising biometric identifier.