922 resultados para Biometric Descriptor
Resumo:
The foraging process of location and exploitation of food in complex termite societies is in part reliant upon unequal division of specific tasks amongst its members (polyethism). To conduct studies assessing the role of individuals in foraging activities it is necessary to have descriptors of worker caste and instar. Here we provide biometric descriptors of specific caste and instar for worker caste and instars of Microcerotermes turneri (Froggatt) (Termitidae: Termitinae) for the worker castes (male and female) for the identification of individuals in laboratory assays applicable across multiple nests. The use of head width for determining sex of workers was successful across multiple nests. The length of the first three flagellum segments of the antenna and tibia three could be used to determine worker instar.
Resumo:
A method of improving the security of biometric templates which satisfies desirable properties such as (a) irreversibility of the template, (b) revocability and assignment of a new template to the same biometric input, (c) matching in the secure transformed domain is presented. It makes use of an iterative procedure based on the bispectrum that serves as an irreversible transformation for biometric features because signal phase is discarded each iteration. Unlike the usual hash function, this transformation preserves closeness in the transformed domain for similar biometric inputs. A number of such templates can be generated from the same input. These properties are illustrated using synthetic data and applied to images from the FRGC 3D database with Gabor features. Verification can be successfully performed using these secure templates with an EER of 5.85%
Resumo:
Cleaning of sugar mill evaporators is an expensive exercise. Identifying the scale components assists in determining which chemical cleaning agents would result in effective evaporator cleaning. The current methods (based on x-ray diffraction techniques, ion exchange/high performance liquid chromatography and thermogravimetry/differential thermal analysis) used for scale characterisation are difficult, time consuming and expensive, and cannot be performed in a conventional analytical laboratory or by mill staff. The present study has examined the use of simple descriptor tests for the characterisation of Australian sugar mill evaporator scales. Scale samples were obtained from seven Australian sugar mill evaporators by mechanical means. The appearance, texture and colour of the scale were noted before the samples were characterised using x-ray fluorescence and x-ray powder diffraction to determine the compounds present. A number of commercial analytical test kits were used to determine the phosphate and calcium contents of scale samples. Dissolution experiments were carried out on the scale samples with selected cleaning agents to provide relevant information about the effect the cleaning agents have on different evaporator scales. Results have shown that by simply identifying the colour and the appearance of the scale, the elemental composition and knowing from which effect the scale originates, a prediction of the scale composition can be made. These descriptors and dissolution experiments on scale samples can be used to provide factory staff with an on-site rapid process to predict the most effective chemicals for chemical cleaning of the evaporators.
Resumo:
Continuous biometric authentication schemes (CBAS) are built around the biometrics supplied by user behavioural characteristics and continuously check the identity of the user throughout the session. The current literature for CBAS primarily focuses on the accuracy of the system in order to reduce false alarms. However, these attempts do not consider various issues that might affect practicality in real world applications and continuous authentication scenarios. One of the main issues is that the presented CBAS are based on several samples of training data either of both intruder and valid users or only the valid users' profile. This means that historical profiles for either the legitimate users or possible attackers should be available or collected before prediction time. However, in some cases it is impractical to gain the biometric data of the user in advance (before detection time). Another issue is the variability of the behaviour of the user between the registered profile obtained during enrollment, and the profile from the testing phase. The aim of this paper is to identify the limitations in current CBAS in order to make them more practical for real world applications. Also, the paper discusses a new application for CBAS not requiring any training data either from intruders or from valid users.
Resumo:
It is possible for the visual attention characteristics of a person to be exploited as a biometric for authentication or identification of individual viewers. The visual attention characteristics of a person can be easily monitored by tracking the gaze of a viewer during the presentation of a known or unknown visual scene. The positions and sequences of gaze locations during viewing may be determined by overt (conscious) or covert (sub-conscious) viewing behaviour. This paper presents a method to authenticate individuals using their covert viewing behaviour, thus yielding a unique behavioural biometric. A method to quantify the spatial and temporal patterns established by the viewer for their covert behaviour is proposed utilsing a principal component analysis technique called `eigenGaze'. Experimental results suggest that it is possible to capture the unique visual attention characteristics of a person to provide a simple behavioural biometric.
Resumo:
The use of appropriate features to represent an output class or object is critical for all classification problems. In this paper, we propose a biologically inspired object descriptor to represent the spectral-texture patterns of image-objects. The proposed feature descriptor is generated from the pulse spectral frequencies (PSF) of a pulse coupled neural network (PCNN), which is invariant to rotation, translation and small scale changes. The proposed method is first evaluated in a rotation and scale invariant texture classification using USC-SIPI texture database. It is further evaluated in an application of vegetation species classification in power line corridor monitoring using airborne multi-spectral aerial imagery. The results from the two experiments demonstrate that the PSF feature is effective to represent spectral-texture patterns of objects and it shows better results than classic color histogram and texture features.
Resumo:
We introduce a lightweight biometric solution for user authentication over networks using online handwritten signatures. The algorithm proposed is based on a modified Hausdorff distance and has favorable characteristics such as low computational cost and minimal training requirements. Furthermore, we investigate an information theoretic model for capacity and performance analysis for biometric authentication which brings additional theoretical insights to the problem. A fully functional proof-of-concept prototype that relies on commonly available off-the-shelf hardware is developed as a client-server system that supports Web services. Initial experimental results show that the algorithm performs well despite its low computational requirements and is resilient against over-the-shoulder attacks.
Resumo:
Cleaning of sugar mill evaporators is an expensive exercise. Identifying the scale components assists in determining which chemical cleaning agents would result in effective evaporator cleaning. The current methods (based on x-ray diffraction techniques, ion exchange/high performance liquid chromatography and thermogravimetry/differential thermal analysis) used for scale characterisation are difficult, time consuming and expensive, and cannot be performed in a conventional analytical laboratory or by mill staff. The present study has examined the use of simple descriptor tests for the characterisation of Australian sugar mill evaporator scales. Scale samples were obtained from seven Australian sugar mill evaporators by mechanical means. The appearance, texture and colour of the scale were noted before the samples were characterised using x-ray fluorescence and x-ray powder diffraction to determine the compounds present. A number of commercial analytical test kits were used to determine the phosphate and calcium contents of scale samples. Dissolution experiments were carried out on the scale samples with selected cleaning agents to provide relevant information about the effect the cleaning agents have on different evaporator scales. Results have shown that by simply identifying the colour and the appearance of the scale, the elemental composition and knowing from which effect the scale originates, a prediction of the scale composition can be made. These descriptors and dissolution experiments on scale samples can be used to provide factory staff with an on-site rapid process to predict the most effective chemicals for chemical cleaning of the evaporators.
Resumo:
This paper presents a new metric, which we call the lighting variance ratio, for quantifying descriptors in terms of their variance to illumination changes. In many applications it is desirable to have descriptors that are robust to changes in illumination, especially in outdoor environments. The lighting variance ratio is useful for comparing descriptors and determining if a descriptor is lighting invariant enough for a given environment. The metric is analysed across a number of datasets, cameras and descriptors. The results show that the upright SIFT descriptor is typically the most lighting invariant descriptor.
Resumo:
This paper examines the issue of face, speaker and bi-modal authentication in mobile environments when there is significant condition mismatch. We introduce this mismatch by enrolling client models on high quality biometric samples obtained on a laptop computer and authenticating them on lower quality biometric samples acquired with a mobile phone. To perform these experiments we develop three novel authentication protocols for the large publicly available MOBIO database. We evaluate state-of-the-art face, speaker and bi-modal authentication techniques and show that inter-session variability modelling using Gaussian mixture models provides a consistently robust system for face, speaker and bi-modal authentication. It is also shown that multi-algorithm fusion provides a consistent performance improvement for face, speaker and bi-modal authentication. Using this bi-modal multi-algorithm system we derive a state-of-the-art authentication system that obtains a half total error rate of 6.3% and 1.9% for Female and Male trials, respectively.
Resumo:
BACKGROUND Tilted disc syndrome (TDS) is associated with characteristic ocular findings. The purpose of this study was to evaluate the ocular, refractive, and biometric characteristics in patients with TDS. METHODS This case-control study included 41 eyes of 25 patients who had established TDS and 40 eyes of 20 healthy control subjects. All participants underwent a complete ocular examination, including refraction and analysis using Fourier transformation, slit lamp biomicroscopy, pachymetry, keratometry, and ocular biometry. Corneal topography examinations were performed in the syndrome group only. RESULTS There were no significant differences in spherical equivalent (P = 0.13) and total astigmatism (P = 0.37) between groups. However, mean best spectacle-corrected visual acuity (Log Mar) was significantly worse in TDS patients (P = 0.003). The lenticular astigmatism was greater in the syndrome group, whereas the corneal component was greater in controls (P = 0.059 and P = 0.028, respectively). The measured biometric features were the same in both groups, except for the lens thickness and lens-axial length factor, which were greater in the TDS group (P = 0.007 and P = 0.055, respectively). CONCLUSIONS Clinically significant lenticular astigmatism, more oblique corneal astigmatism, and thicker lenses were characteristic findings in patients with TDS.
Resumo:
Purpose: To evaluate the ocular refractive and biometric characteristics in patients with tilted disc syndrome (TDS). Methods: This case-control study comprised 41 eyes of 25 patients with established TDS and forty eyes of 20 age- and sex-matched healthy control subjects. All had a complete ocular examination including refraction and analysis using Fourier transformation, slit lamp biomicroscopy, pachymetry keratometry, and ocular biometry. Corneal topography examinations were performed in the syndrome group only. Results: There were no significant differences in spherical equivalent (p = 0.334) and total astigmatism (p= 0.246) between groups. However, mean best spectacular corrected visual acuity was significantly worse in TDS patients (P < 0.001). The lenticular astigmatism was significantly greater in the syndrome group, while the corneal component was greater in the controls (p = 0.004 and p = 0.002, respectively). The measured biometric features were the same in both groups, except for the lens thickness, relative lens position, and lens-axial length factor which were greater in the TDS group (p = 0.002, p = 0.015, and p = 0.025, respectively). Conclusions: Clinically significant lenticular astigmatism, more oblique corneal astigmatism, and thicker lens were characteristic findings in patients with TDS.
Resumo:
It is not uncommon to hear a person of interest described by their height, build, and clothing (i.e. type and colour). These semantic descriptions are commonly used by people to describe others, as they are quick to communicate and easy to understand. However such queries are not easily utilised within intelligent video surveillance systems, as they are difficult to transform into a representation that can be utilised by computer vision algorithms. In this paper we propose a novel approach that transforms such a semantic query into an avatar in the form of a channel representation that is searchable within a video stream. We show how spatial, colour and prior information (person shape) can be incorporated into the channel representation to locate a target using a particle-filter like approach. We demonstrate state-of-the-art performance for locating a subject in video based on a description, achieving a relative performance improvement of 46.7% over the baseline. We also apply this approach to person re-detection, and show that the approach can be used to re-detect a person in a video steam without the use of person detection.