853 resultados para Biometrias multimodais. Comitês de classificadores. Biometrias revog áveis. Algoritmos genéticos
Resumo:
This work discusses the application of techniques of ensembles in multimodal recognition systems development in revocable biometrics. Biometric systems are the future identification techniques and user access control and a proof of this is the constant increases of such systems in current society. However, there is still much advancement to be developed, mainly with regard to the accuracy, security and processing time of such systems. In the search for developing more efficient techniques, the multimodal systems and the use of revocable biometrics are promising, and can model many of the problems involved in traditional biometric recognition. A multimodal system is characterized by combining different techniques of biometric security and overcome many limitations, how: failures in the extraction or processing the dataset. Among the various possibilities to develop a multimodal system, the use of ensembles is a subject quite promising, motivated by performance and flexibility that they are demonstrating over the years, in its many applications. Givin emphasis in relation to safety, one of the biggest problems found is that the biometrics is permanently related with the user and the fact of cannot be changed if compromised. However, this problem has been solved by techniques known as revocable biometrics, which consists of applying a transformation on the biometric data in order to protect the unique characteristics, making its cancellation and replacement. In order to contribute to this important subject, this work compares the performance of individual classifiers methods, as well as the set of classifiers, in the context of the original data and the biometric space transformed by different functions. Another factor to be highlighted is the use of Genetic Algorithms (GA) in different parts of the systems, seeking to further maximize their eficiency. One of the motivations of this development is to evaluate the gain that maximized ensembles systems by different GA can bring to the data in the transformed space. Another relevant factor is to generate revocable systems even more eficient by combining two or more functions of transformations, demonstrating that is possible to extract information of a similar standard through applying different transformation functions. With all this, it is clear the importance of revocable biometrics, ensembles and GA in the development of more eficient biometric systems, something that is increasingly important in the present day
Resumo:
Traditional applications of feature selection in areas such as data mining, machine learning and pattern recognition aim to improve the accuracy and to reduce the computational cost of the model. It is done through the removal of redundant, irrelevant or noisy data, finding a representative subset of data that reduces its dimensionality without loss of performance. With the development of research in ensemble of classifiers and the verification that this type of model has better performance than the individual models, if the base classifiers are diverse, comes a new field of application to the research of feature selection. In this new field, it is desired to find diverse subsets of features for the construction of base classifiers for the ensemble systems. This work proposes an approach that maximizes the diversity of the ensembles by selecting subsets of features using a model independent of the learning algorithm and with low computational cost. This is done using bio-inspired metaheuristics with evaluation filter-based criteria
Resumo:
RePART (Reward/Punishment ART) is a neural model that constitutes a variation of the Fuzzy Artmap model. This network was proposed in order to minimize the inherent problems in the Artmap-based model, such as the proliferation of categories and misclassification. RePART makes use of additional mechanisms, such as an instance counting parameter, a reward/punishment process and a variable vigilance parameter. The instance counting parameter, for instance, aims to minimize the misclassification problem, which is a consequence of the sensitivity to the noises, frequently presents in Artmap-based models. On the other hand, the use of the variable vigilance parameter tries to smoouth out the category proliferation problem, which is inherent of Artmap-based models, decreasing the complexity of the net. RePART was originally proposed in order to minimize the aforementioned problems and it was shown to have better performance (higer accuracy and lower complexity) than Artmap-based models. This work proposes an investigation of the performance of the RePART model in classifier ensembles. Different sizes, learning strategies and structures will be used in this investigation. As a result of this investigation, it is aimed to define the main advantages and drawbacks of this model, when used as a component in classifier ensembles. This can provide a broader foundation for the use of RePART in other pattern recognition applications
Resumo:
The objective of the researches in artificial intelligence is to qualify the computer to execute functions that are performed by humans using knowledge and reasoning. This work was developed in the area of machine learning, that it s the study branch of artificial intelligence, being related to the project and development of algorithms and techniques capable to allow the computational learning. The objective of this work is analyzing a feature selection method for ensemble systems. The proposed method is inserted into the filter approach of feature selection method, it s using the variance and Spearman correlation to rank the feature and using the reward and punishment strategies to measure the feature importance for the identification of the classes. For each ensemble, several different configuration were used, which varied from hybrid (homogeneous) to non-hybrid (heterogeneous) structures of ensemble. They were submitted to five combining methods (voting, sum, sum weight, multiLayer Perceptron and naïve Bayes) which were applied in six distinct database (real and artificial). The classifiers applied during the experiments were k- nearest neighbor, multiLayer Perceptron, naïve Bayes and decision tree. Finally, the performance of ensemble was analyzed comparatively, using none feature selection method, using a filter approach (original) feature selection method and the proposed method. To do this comparison, a statistical test was applied, which demonstrate that there was a significant improvement in the precision of the ensembles
Resumo:
Classifier ensembles are systems composed of a set of individual classifiers and a combination module, which is responsible for providing the final output of the system. In the design of these systems, diversity is considered as one of the main aspects to be taken into account since there is no gain in combining identical classification methods. The ideal situation is a set of individual classifiers with uncorrelated errors. In other words, the individual classifiers should be diverse among themselves. One way of increasing diversity is to provide different datasets (patterns and/or attributes) for the individual classifiers. The diversity is increased because the individual classifiers will perform the same task (classification of the same input patterns) but they will be built using different subsets of patterns and/or attributes. The majority of the papers using feature selection for ensembles address the homogenous structures of ensemble, i.e., ensembles composed only of the same type of classifiers. In this investigation, two approaches of genetic algorithms (single and multi-objective) will be used to guide the distribution of the features among the classifiers in the context of homogenous and heterogeneous ensembles. The experiments will be divided into two phases that use a filter approach of feature selection guided by genetic algorithm
Resumo:
Committees of classifiers may be used to improve the accuracy of classification systems, in other words, different classifiers used to solve the same problem can be combined for creating a system of greater accuracy, called committees of classifiers. To that this to succeed is necessary that the classifiers make mistakes on different objects of the problem so that the errors of a classifier are ignored by the others correct classifiers when applying the method of combination of the committee. The characteristic of classifiers of err on different objects is called diversity. However, most measures of diversity could not describe this importance. Recently, were proposed two measures of the diversity (good and bad diversity) with the aim of helping to generate more accurate committees. This paper performs an experimental analysis of these measures applied directly on the building of the committees of classifiers. The method of construction adopted is modeled as a search problem by the set of characteristics of the databases of the problem and the best set of committee members in order to find the committee of classifiers to produce the most accurate classification. This problem is solved by metaheuristic optimization techniques, in their mono and multi-objective versions. Analyzes are performed to verify if use or add the measures of good diversity and bad diversity in the optimization objectives creates more accurate committees. Thus, the contribution of this study is to determine whether the measures of good diversity and bad diversity can be used in mono-objective and multi-objective optimization techniques as optimization objectives for building committees of classifiers more accurate than those built by the same process, but using only the accuracy classification as objective of optimization
Resumo:
Significant advances have emerged in research related to the topic of Classifier Committees. The models that receive the most attention in the literature are those of the static nature, also known as ensembles. The algorithms that are part of this class, we highlight the methods that using techniques of resampling of the training data: Bagging, Boosting and Multiboosting. The choice of the architecture and base components to be recruited is not a trivial task and has motivated new proposals in an attempt to build such models automatically, and many of them are based on optimization methods. Many of these contributions have not shown satisfactory results when applied to more complex problems with different nature. In contrast, the thesis presented here, proposes three new hybrid approaches for automatic construction for ensembles: Increment of Diversity, Adaptive-fitness Function and Meta-learning for the development of systems for automatic configuration of parameters for models of ensemble. In the first one approach, we propose a solution that combines different diversity techniques in a single conceptual framework, in attempt to achieve higher levels of diversity in ensembles, and with it, the better the performance of such systems. In the second one approach, using a genetic algorithm for automatic design of ensembles. The contribution is to combine the techniques of filter and wrapper adaptively to evolve a better distribution of the feature space to be presented for the components of ensemble. Finally, the last one approach, which proposes new techniques for recommendation of architecture and based components on ensemble, by techniques of traditional meta-learning and multi-label meta-learning. In general, the results are encouraging and corroborate with the thesis that hybrid tools are a powerful solution in building effective ensembles for pattern classification problems.
Resumo:
Educational Data Mining is an application domain in artificial intelligence area that has been extensively explored nowadays. Technological advances and in particular, the increasing use of virtual learning environments have allowed the generation of considerable amounts of data to be investigated. Among the activities to be treated in this context exists the prediction of school performance of the students, which can be accomplished through the use of machine learning techniques. Such techniques may be used for student’s classification in predefined labels. One of the strategies to apply these techniques consists in their combination to design multi-classifier systems, which efficiency can be proven by results achieved in other studies conducted in several areas, such as medicine, commerce and biometrics. The data used in the experiments were obtained from the interactions between students in one of the most used virtual learning environments called Moodle. In this context, this paper presents the results of several experiments that include the use of specific multi-classifier systems systems, called ensembles, aiming to reach better results in school performance prediction that is, searching for highest accuracy percentage in the student’s classification. Therefore, this paper presents a significant exploration of educational data and it shows analyzes of relevant results about these experiments.
Resumo:
In systems that combine the outputs of classification methods (combination systems), such as ensembles and multi-agent systems, one of the main constraints is that the base components (classifiers or agents) should be diverse among themselves. In other words, there is clearly no accuracy gain in a system that is composed of a set of identical base components. One way of increasing diversity is through the use of feature selection or data distribution methods in combination systems. In this work, an investigation of the impact of using data distribution methods among the components of combination systems will be performed. In this investigation, different methods of data distribution will be used and an analysis of the combination systems, using several different configurations, will be performed. As a result of this analysis, it is aimed to detect which combination systems are more suitable to use feature distribution among the components
Resumo:
The pattern classification is one of the machine learning subareas that has the most outstanding. Among the various approaches to solve pattern classification problems, the Support Vector Machines (SVM) receive great emphasis, due to its ease of use and good generalization performance. The Least Squares formulation of SVM (LS-SVM) finds the solution by solving a set of linear equations instead of quadratic programming implemented in SVM. The LS-SVMs provide some free parameters that have to be correctly chosen to achieve satisfactory results in a given task. Despite the LS-SVMs having high performance, lots of tools have been developed to improve them, mainly the development of new classifying methods and the employment of ensembles, in other words, a combination of several classifiers. In this work, our proposal is to use an ensemble and a Genetic Algorithm (GA), search algorithm based on the evolution of species, to enhance the LSSVM classification. In the construction of this ensemble, we use a random selection of attributes of the original problem, which it splits the original problem into smaller ones where each classifier will act. So, we apply a genetic algorithm to find effective values of the LS-SVM parameters and also to find a weight vector, measuring the importance of each machine in the final classification. Finally, the final classification is obtained by a linear combination of the decision values of the LS-SVMs with the weight vector. We used several classification problems, taken as benchmarks to evaluate the performance of the algorithm and compared the results with other classifiers
Resumo:
Multi-classifier systems, also known as ensembles, have been widely used to solve several problems, because they, often, present better performance than the individual classifiers that form these systems. But, in order to do so, it s necessary that the base classifiers to be as accurate as diverse among themselves this is also known as diversity/accuracy dilemma. Given its importance, some works have investigate the ensembles behavior in context of this dilemma. However, the majority of them address homogenous ensemble, i.e., ensembles composed only of the same type of classifiers. Thus, motivated by this limitation, this thesis, using genetic algorithms, performs a detailed study on the dilemma diversity/accuracy for heterogeneous ensembles
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Em muitos problemas de otimização há dificuldades em alcançar um resultado ótimo ou mesmo um resultado próximo ao valor ótimo em um tempo viável, principalmente quando se trabalha em grande escala. Por isso muitos desses problemas são abordados por heurísticas ou metaheurísticas que executam buscas por melhores soluções dentro do espaço de busca definido. Dentro da computação natural estão os Algoritmos Culturais e os Algoritmos Genéticos, que são considerados metaheurísticas evolutivas que se complementam devido ao mecanismo dual de herança cultura/genética. A proposta do presente trabalho é estudar e utilizar tais mecanismos acrescentando tanto heurísticas de busca local como multipopulações aplicados em problemas de otimização combinatória (caixeiro viajante e mochila), funções multimodais e em problemas restritos. Serão executados alguns experimentos para efetuar uma avaliação em relação ao desempenho desses mecanismos híbridos e multipopulacionais com outros mecanismos dispostos na literatura de acordo com cada problema de otimização aqui abordado.
Resumo:
In the world we are constantly performing everyday actions. Two of these actions are frequent and of great importance: classify (sort by classes) and take decision. When we encounter problems with a relatively high degree of complexity, we tend to seek other opinions, usually from people who have some knowledge or even to the extent possible, are experts in the problem domain in question in order to help us in the decision-making process. Both the classification process as the process of decision making, we are guided by consideration of the characteristics involved in the specific problem. The characterization of a set of objects is part of the decision making process in general. In Machine Learning this classification happens through a learning algorithm and the characterization is applied to databases. The classification algorithms can be employed individually or by machine committees. The choice of the best methods to be used in the construction of a committee is a very arduous task. In this work, it will be investigated meta-learning techniques in selecting the best configuration parameters of homogeneous committees for applications in various classification problems. These parameters are: the base classifier, the architecture and the size of this architecture. We investigated nine types of inductors candidates for based classifier, two methods of generation of architecture and nine medium-sized groups for architecture. Dimensionality reduction techniques have been applied to metabases looking for improvement. Five classifiers methods are investigated as meta-learners in the process of choosing the best parameters of a homogeneous committee.
Resumo:
There are authentication models which use passwords, keys, personal identifiers (cards, tags etc) to authenticate a particular user in the authentication/identification process. However, there are other systems that can use biometric data, such as signature, fingerprint, voice, etc., to authenticate an individual in a system. In another hand, the storage of biometric can bring some risks such as consistency and protection problems for these data. According to this problem, it is necessary to protect these biometric databases to ensure the integrity and reliability of the system. In this case, there are models for security/authentication biometric identification, for example, models and Fuzzy Vault and Fuzzy Commitment systems. Currently, these models are mostly used in the cases for protection of biometric data, but they have fragile elements in the protection process. Therefore, increasing the level of security of these methods through changes in the structure, or even by inserting new layers of protection is one of the goals of this thesis. In other words, this work proposes the simultaneous use of encryption (Encryption Algorithm Papilio) with protection models templates (Fuzzy Vault and Fuzzy Commitment) in identification systems based on biometric. The objective of this work is to improve two aspects in Biometric systems: safety and accuracy. Furthermore, it is necessary to maintain a reasonable level of efficiency of this data through the use of more elaborate classification structures, known as committees. Therefore, we intend to propose a model of a safer biometric identification systems for identification.