26 resultados para Biomethane


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anaerobic digestion (AD) of biodegradable waste is an environmentally and economically sustainable solution which incorporates waste treatment and energy recovery. The organic fraction of municipal solid waste (OFMSW), which comprises mostly of food waste, is highly degradable under anaerobic conditions. Biogas produced from OFMSW, when upgraded to biomethane, is recognised as one of the most sustainable renewable biofuels and can also be one of the cheapest sources of biomethane if a gate fee is associated with the substrate. OFMSW is a complex and heterogeneous material which may have widely different characteristics depending on the source of origin and collection system used. The research presented in this thesis investigates the potential energy resource from a wide range of organic waste streams through field and laboratory research on real world samples. OFMSW samples collected from a range of sources generated methane yields ranging from 75 to 160 m3 per tonne. Higher methane yields are associated with source segregated food waste from commercial catering premises as opposed to domestic sources. The inclusion of garden waste reduces the specific methane yield from household organic waste. In continuous AD trials it was found that a conventional continuously stirred tank reactor (CSTR) gave the highest specific methane yields at a moderate organic loading rate of 2 kg volatile solids (VS) m-3 digester day-1 and a hydraulic retention time of 30 days. The average specific methane yield obtained at this loading rate in continuous digestion was 560 ± 29 L CH4 kg-1 VS which exceeded the biomethane potential test result by 5%. The low carbon to nitrogen ratio (C: N <14:1) associated with canteen food waste lead to increasing concentrations of volatile fatty acids in line with high concentrations of ammonia nitrogen at higher organic loading rates. At an organic loading rate of 4 kg VS m-3day-1 the specific methane yield dropped considerably (381 L CH4 kg-1 VS), the pH rose to 8.1 and free ammonia (NH3 ) concentrations reached toxicity levels towards the end of the trial (ca. 950 mg L-1). A novel two phase AD reactor configuration consisting of a series of sequentially fed leach bed reactors connected to an upflow anaerobic sludge blanket (UASB) demonstrated a high rate of organic matter decay but resulted in lower specific methane yields (384 L CH4 kg-1 VS) than the conventional CSTR system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On-farm biogas production is typically associated with forage maize as the biomass source. Digesters are designed and operated with the focus of optimising the conditions for this feedstock. Thus, such systems may not be ideally suited to the digestion of grass. Ireland has ca. 3.85 million ha of grassland. Annual excess grass, surplus to livestock requirements, could potentially fuel an anaerobic digestion industry. Biomethane associated with biomass from 1.1 % of grassland in Ireland, could potentially generate over 10 % renewable energy supply in transport. This study aims to identify and optimise technologies for the production of biomethane from grass silage. Mono-digestion of grass silage and co-digestion with slurry, as would occur on Irish farms, is investigated in laboratory trials. Grass silage was shown to have 7 times greater methane potential than dairy slurry on a fresh weight basis (107 m3 t-1 v 16 m3 t-1). However, comprehensive trace element profiles indicated that cobalt, iron and nickel are deficient in mono-digestion of grass silage at a high organic loading rate (OLR) of 4.0 kg VS m-3 d-1. The addition of a slurry co-substrate was beneficial due to its wealth of essential trace elements. To stimulate hydrolysis of high lignocellulose grass silage, particle size reduction (physical) and rumen fluid addition (biological) were investigated. In a continuous trial, digestion of grass silage of <1 cm particle size achieved a specific methane yield of 371 L CH4 kg-1 VS when coupled with rumen fluid addition. The concept of demand driven biogas was also examined in a two-phase digestion system (leaching with UASB). When demand for electricity is low it is recommended to disconnect the UASB from the system and recirculate rumen fluid to increase volatile fatty acid (VFA) and soluble chemical oxygen demand (SCOD) production whilst minimising volatile solids (VS) destruction. At times of high demand for electricity, connection of the UASB increases the destruction of volatiles and associated biogas production. The above experiments are intended to assess a range of biogas production options from grass silage with a specific focus on maximising methane yields and provide a guideline for feasible design and operation of on-farm digesters in Ireland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: The potential variance in feedstock costs can have signifi cant implications for the cost of a biofuel and the fi nancial viability of a biofuel facility. This paper employs the Grange Feed Costing Model to assess the cost of on-farm biomethane production using grass silages produced under a range of management scenarios. These costs were compared with the cost of wheat grain and sugarbeet roots for ethanol production at an industrial scale. Of the three feedstocks examined, grass silage represents the cheapest feedstock per GJ of biofuel produced. At a production cost of €27/tonne (t) feedstock (or €150/t volatile solids (VS)), the feedstock production cost of grass silage per gigajoule (GJ) of biofuel (€12.27) is lower than that of sugarbeet (€16.82) and wheat grain (€18.61). Grass biomethane is also the cheapest biofuel when grass silage is costed at the bottom quartile purchase price of silage of €19/t (€93/t VS). However, when considering the production costs (full-costing) of the three feedstocks, the total cost of grass biomethane (€32.37/GJ of biofuel; intensive 2-cut system) from a small on-farm facility ranks between that of sugarbeet (€29.62) and wheat grain ethanol (€34.31) produced in large industrial facilities. The feedstock costs for the above three biofuels represent 0.38, 0.57, and 0.54 of the total biofuel cost. The importance of feedstock cost on biofuel cost is further highlighted by the 0.43 increase in the cost of biomethane when grass silage is priced at the top quartile (€46/t or €232/t VS) compared to the bottom quartile purchase price.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grass biogas/biomethane has been put forward as a renewable energy solution and it has been shown to perform well in terms of energy balance, greenhouse gas emissions and policy constraints. Biofuel and energy crop solutions are country-specific and grass biomethane has strong potential in countries with temperate climates and a high proportion of grassland, such as Ireland. For a grass biomethane industry to develop in a country, suitable regions (i.e. those with the highest potential) must be identified. In this paper, factors specifically related to the assessment of the potential of a grass biogas/biomethane industry are identified and analysed. The potential for grass biogas and grass biomethane is determined on a county-by-county basis using multi-criteria decision analysis. Values are assigned to each county and ratings and weightings applied to determine the overall county potential. The potential for grass biomethane with co-digestion of slaughter waste (belly grass) is also determined. The county with the highest potential (Limerick) is analysed in detail and is shown to have ready potential for production of gaseous biofuel to meet either 50% of the vehicle fleet or 130% of the domestic natural gas demand, through 25 facilities at a scale of ca. 30ktyr of feedstock. The assessment factors developed in this paper can be used in other resource studies into grass biomethane or other energy crops. © 2010 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grass biomethane surpasses the 60% greenhouse gas (GHG) savings relative to the fossil fuel replaced required by EU Directive 2009/28/EC. However, there are growing concerns that when the indirect effects of biofuels are taken into account, GHG savings may become negative. There has been no research to date into the indirect effects of grass biomethane; this paper aims to fill that knowledge gap. A causal-descriptive assessment is carried out and identifies the likely indirect effect of a grass biomethane industry in Ireland as a reduction in beef exports to the UK. Three main scenarios are then analyzed: an increase in indigenous UK beef production, an increase in beef imported to the UK from other countries (EU, New Zealand and Brazil), and a decrease in beef consumption leading to increased poultry consumption. The GHG emissions from each of these scenarios are determined and the resulting savings relative to fossil diesel vary between -636% and 102%. The significance of the findings is then discussed. It is the view of the authors that, while consideration of indirect effects is important, an Irish grass biomethane industry cannot be held accountable for the associated emissions. A global GHG accounting system is therefore proposed; however, the difficulty of implementing such a system is acknowledged, as is its probable ineffectualness. Such a system would not treat the source of the problem - rising consumption. The authors conclude that the most effective method of combating the indirect effects of biofuels is a reduction in general consumption. © 2011 Society of Chemical Industry and John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Farm incomes in Ireland are in decline and many farmers would operate at a loss in the absence of subsidies. Agriculture is responsible for 27% of Ireland's greenhouse gas emissions and is the largest contributing sector. Penetration of renewable energy in the heat and transport sectors is falling short of targets, and there is no clear plan for achieving them. The anaerobic digestion of grass to produce biogas or biomethane is put forward as a multifaceted solution, which could help meet energy and emissions targets, reduce dependence on imported energy, and provide additional farm income. This paper addresses the economic viability of such a system. Grass biogas/biomethane fares poorly under the current combined heat and power tariff structure, which is geared toward feedstock that attracts a gate fee. Tariff structures similar to those used in other countries are necessary for the industry to develop. Equally, regulation should be implemented to allow injection of biomethane into the gas grid in Ireland. Blends of natural gas and biomethane can be sold, offering a cost-competitive green fuel. Sale as a renewable transport fuel could allow profitability for the farmer and savings for the consumer, but suffers due to the lack of a market. Under current conditions, the most economically viable outlet for grass biomethane is sale as a renewable heating fuel. The key to competitiveness is the existing natural gas infrastructure that enables distribution of grass biomethane, and the renewable energy targets that allow renewable fuels to compete against each other. © 2010 Society of Chemical Industry and John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing energy consumption has exerted great pressure on natural resources; this has led to a move towards sustainable energy resources to improve security of supply and to reduce greenhouse gas emissions. However, the rush to the cure may have been made in haste. Biofuels in particular, have a bad press both in terms of competition with good agricultural land for food, and also in terms of the associated energy balance with the whole life cycle analysis of the biofuel system. The emphasis is now very much on sustainable biofuel production; biofuels from wastes and lignocellulosic material are now seen as good sustainable biofuels that affect significantly better greenhouse gas balances as compared with first generation biofuels. Ireland has a significant resource of organic waste that could be a potential source of energy through anaerobic digestion. Ireland has 8% of the cattle population of the EU with less than 1% of the human population; as a result 91% of agricultural land in Ireland is under grass. Residues such as slurries and slaughter waste together with energy crops such as grass have an excellent potential to produce biogas that may be upgraded to biomethane. This biomethane may be used as a natural gas substitute; bio-compressed natural gas may then be an avenue for a biofuel strategy. It is estimated that a maximum potential of 33% of natural gas may be substituted by 2020 with a practical obtainable level of 7.5% estimated. Together with biodiesel from residues the practical obtainable level of this strategy may effect greater than a 5% substitution by energy of transport. The residues considered in this strategy to produce biofuel (excluding grass) have the potential to save 93,000 ha of agricultural land (23% of Irish arable land) when compared to a rapeseed biodiesel strategy. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biofuels have had bad press in recent years. There are primarily two distinct issues. The biofuel crops with the best yields (such as sugarcane or oil palm) grow in tropical countries where habitat destruction has occurred in association with the biofuel system. First generation indigenous energy crops commonly used for transport fuel in Europe (such as rapeseed and wheat) have low yields and/or the energy balance of the associated biofuel system is poor. This paper shows that grass is a crop with significant yields and grass biomethane (a gaseous renewable transport biofuel) has a very good energy balance and does not involve habitat destruction, land use change, new farming practices or annual tilling. The gross and net energy production per hectare are almost identical to palm oil biodiesel; the net energy of the grass system is at least 50% better than the next best indigenous European biofuel system investigated. Ten percent of Irish grasslands could fuel over 55% of the Irish private car fleet. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concentrating Solar Power (CSP) plants typically incorporate one or various auxiliary boilers operating in parallel to the solar field to facilitate start up operations, provide system stability, avoid freezing of heat transfer fluid (HTF) and increase generation capacity. The environmental performance of these plants is highly influenced by the energy input and the type of auxiliary fuel, which in most cases is natural gas (NG). Replacing the NG with biogas or biomethane (BM) in commercial CSP installations is being considered as a means to produce electricity that is fully renewable and free from fossil inputs. Despite their renewable nature, the use of these biofuels also generates environmental impacts that need to be adequately identified and quantified. This paper investigates the environmental performance of a commercial wet-cooled parabolic trough 50 MWe CSP plant in Spain operating according to two strategies: solar-only, with minimum technically viable energy non-solar contribution; and hybrid operation, where 12 % of the electricity derives from auxiliary fuels (as permitted by Spanish legislation). The analysis was based on standard Life Cycle Assessment (LCA) methodology (ISO 14040-14040). The technical viability and the environmental profile of operating the CSP plant with different auxiliary fuels was evaluated, including: NG; biogas from an adjacent plant; and BM withdrawn from the gas network. The effect of using different substrates (biowaste, sewage sludge, grass and a mix of biowaste with animal manure) for the production of the biofuels was also investigated. The results showed that NG is responsible for most of the environmental damage associated with the operation of the plant in hybrid mode. Replacing NG with biogas resulted in a significant improvement of the environmental performance of the installation, primarily due to reduced impact in the following categories: natural land transformation, depletion of fossil resources, and climate change. However, despite the renewable nature of the biofuels, other environmental categories like human toxicity, eutrophication, acidification and marine ecotoxicity scored higher when using biogas and BM.