925 resultados para Biomedical and Biological Applications


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation will be focused on the characterization of an atmospheric pressure plasma jet source with an application oriented diagnostic approach and the description of processes supported by this plasma source. The plasma source investigated is a single electrode plasma jet. Schlieren images, optical emission spectra, temperature and heat flux profiles are analyzed to deeply investigate the fluid dynamic, the chemical composition and the thermal output of the plasma generated with a nanosecond-pulsed high voltage generator. The maximum temperature measured is about 45 °C and values close to the room temperature are reached 10 mm down the source outlet, ensuring the possibility to use the plasma jet for the treatment of thermosensitive materials, such as, for example, biological substrate or polymers. Electrospinning of polymeric solution allows the production of nanofibrous non-woven mats and the plasma pre-treatment of the solutions leads to the realization of defect free nanofibers. The use of the plasma jet allows the electrospinnability of a non-spinnable poly(L-lactic acid) (PLLA) solution, suitable for the production of biological scaffold for the wound dressing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vertically aligned zinc oxide nanorods (ZnO NRs) were synthesized on kapton flexible sheets using a simple and cost-effective three-step process (electrochemical seeding, annealing under ambient conditions, and chemical solution growth). Scanning electron microscopy studies reveal that ZnO NRs grown on seed-layers, developed by electrochemical deposition at a negative potential of 1.5 V over a duration of 2.5 min and annealed at 200 degrees C for 2 h, consist of uniform morphology and good chemical stoichiometry. Transmission electron microscopy analyses show that the as-grown ZnO NRs have single crystalline hexagonal structure with a preferential growth direction of < 001 >. Highly flexible p-n junction diodes fabricated by using p-type conductive polymer exhibited excellent diode characteristics even under the fold state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flow cytometry is a benchmark technique used for basic research and clinical diagnosis of various diseases. Despite being a high-throughput technique, it fails in capturing the morphology of cells being analyzed. Imaging flow cytometry is a combination of flow-cytometry and digital microscopy, which offers advantages of both the techniques. In this paper, we report on the development of an indigenous Imaging Flow Cytometer, realized with the combination of Optics, Microfluidics, and High-speed imaging. A custom-made bright-field transmission microscope is used to capture images of cells flowing across the microfluidic device. High-throughput morphological analysis on suspension of yeast cells is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advent of digital microfluidic lab-on-a-chip (LoC) technology offers a platform for developing diagnostic applications with the advantages of portability, reduction of the volumes of the sample and reagents, faster analysis times, increased automation, low power consumption, compatibility with mass manufacturing, and high throughput. Moreover, digital microfluidics is being applied in other areas such as airborne chemical detection, DNA sequencing by synthesis, and tissue engineering. In most diagnostic and chemical-detection applications, a key challenge is the preparation of the analyte for presentation to the on-chip detection system. Thus, in diagnostics, raw physiological samples must be introduced onto the chip and then further processed by lysing blood cells and extracting DNA. For massively parallel DNA sequencing, sample preparation can be performed off chip, but the synthesis steps must be performed in a sequential on-chip format by automated control of buffers and nucleotides to extend the read lengths of DNA fragments. In airborne particulate-sampling applications, the sample collection from an air stream must be integrated into the LoC analytical component, which requires a collection droplet to scan an exposed impacted surface after its introduction into a closed analytical section. Finally, in tissue-engineering applications, the challenge for LoC technology is to build high-resolution (less than 10 microns) 3D tissue constructs with embedded cells and growth factors by manipulating and maintaining live cells in the chip platform. This article discusses these applications and their implementation in digital-microfluidic LoC platforms. © 2007 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[CoCl(-Cl)(Hpz(Ph))(3)](2) (1) and [CoCl2(Hpz(Ph))(4)] (2) were obtained by reaction of CoCl2 with HC(pz(Ph))(3) and Hpz(Ph), respectively (Hpz(Ph)=3-phenylpyrazole). The compounds were isolated as air-stable solids and fully characterized by IR and far-IR spectroscopy, MS(ESI+/-), elemental analysis, cyclic voltammetry (CV), controlled potential electrolysis, and single-crystal X-ray diffraction. Electrochemical studies showed that 1 and 2 undergo single-electron irreversible (CoCoIII)-Co-II oxidations and (CoCoI)-Co-II reductions at potentials measured by CV, which also allowed, in the case of dinuclear complex 1, the detection of electronic communication between the Co centers through the chloride bridging ligands. The electrochemical behavior of models of 1 and 2 were also investigated by density functional theory (DFT) methods, which indicated that the vertical oxidation of 1 and 2 (that before structural relaxation) affects mostly the chloride and pyrazolyl ligands, whereas adiabatic oxidation (that after the geometry relaxation) and reduction are mostly metal centered. Compounds 1 and 2 and, for comparative purposes, other related scorpionate and pyrazole cobalt complexes, exhibit catalytic activity for the peroxidative oxidation of cyclohexane to cyclohexanol and cyclohexanone under mild conditions (room temperature, aqueous H2O2). Insitu X-ray absorption spectroscopy studies indicated that the species derived from complexes 1 and 2 during the oxidation of cyclohexane (i.e., Ox-1 and Ox-2, respectively) are analogous and contain a Co-III site. Complex 2 showed low invitro cytotoxicity toward the HCT116 colorectal carcinoma and MCF7 breast adenocarcinoma cell lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biodegradable polymers for short time applications have attracted much interest all over the world. The reason behind this growing interest is the incompatibility of the polymeric wastes with the environment where they are disposed after usage. Synthetic aliphatic polyesters represent one of the most economically competitive biodegradable polymers. In addition, they gained considerable attention as they combine biodegradability and biocompatibility with interesting physical and chemical properties. In this framework, the present research work focused on the modification by reactive blending and polycondensation of two different aliphatic polyesters, namely poly(butylene succinate) (PBS) and poly(butylene 1,4-cyclohexanedicarboxylate) (PBCE). Both are characterized by good thermal properties, but their mechanical characteristics do not fit the requirements for applications in which high flexibility is requested and, moreover, both show slow biodegradation rate. With the aim of developing new materials with improved characteristics with respect to the parent homopolymers, novel etheroatom containing PBS and PBCE-based fully aliphatic polyesters and copolyesters have been therefore synthesized and carefully characterized. The introduction of oxygen or sulphur atoms along the polymer chains, by acting on chemical composition or molecular architecture, tailored solid-state properties and biodegradation rate: type and amount of comonomeric units and sequence distribution deeply affected the material final properties owing, among all, to the hydrophobic/hydrophilic ratio and to the different ability of the polymer to crystallize. The versatility of the synthesized copolymers has been well proved: as a matter of fact these polymers can be exploited both for biomedical and ecological applications. Feasibility of 3D electrospun scaffolds has been investigated, biocompatibility studies and controlled release of a model molecule showed good responses. As regards ecological applications, barrier properties and eco-toxicological assessments have been conducted with outstanding results. Finally, the ability of the novel polyesters to undergo both hydrolytic and enzymatic degradation has been demonstrated under physiological and environmental conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Engineering Sciences and Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this thesis is the atomic-scale simulation of the crystal-chemical and physical (phonon, energetic) properties of some strategically important minerals for structural ceramics, biomedical and petrological applications. These properties affect the thermodynamic stability and rule the mineral-environment interface phenomena, with important economical, (bio)technological, petrological and environmental implications. The minerals of interest belong to the family of phyllosilicates (talc, pyrophyllite and muscovite) and apatite (OHAp), chosen for their importance in industrial and biomedical applications (structural ceramics) and petrophysics. In this thesis work we have applicated quantum mechanics methods, formulas and knowledge to the resolution of mineralogical problems ("Quantum Mineralogy”). The chosen theoretical approach is the Density Functional Theory (DFT), along with periodic boundary conditions to limit the portion of the mineral in analysis to the crystallographic cell and the hybrid functional B3LYP. The crystalline orbitals were simulated by linear combination of Gaussian functions (GTO). The dispersive forces, which are important for the structural determination of phyllosilicates and not properly con-sidered in pure DFT method, have been included by means of a semi-empirical correction. The phonon and the mechanical properties were also calculated. The equation of state, both in athermal conditions and in a wide temperature range, has been obtained by means of variations in the volume of the cell and quasi-harmonic approximation. Some thermo-chemical properties of the minerals (isochoric and isobaric thermal capacity) were calculated, because of their considerable applicative importance. For the first time three-dimensional charts related to these properties at different pressures and temperatures were provided. The hydroxylapatite has been studied from the standpoint of structural and phonon properties for its biotechnological role. In fact, biological apatite represents the inorganic phase of vertebrate hard tissues. Numerous carbonated (hydroxyl)apatite structures were modelled by QM to cover the broadest spectrum of possible biological structural variations to fulfil bioceramics applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanostructured metals are a promising class of biomaterials for application in orthopedics to improve the mechanical performance and biological response for increasing the life of biomedical implants. Surface mechanical attrition treatment (SMAT) is an efficient way of engineering nanocrystalline surfaces on metal substrates. In this work, 316L stainless steel (SS), a widely used orthopedic biomaterial, was subjected to SMAT to generate a nanocrystalline surface. Surface nanocrystallization modified the nature of the oxide layer present on the surface. It increased the corrosion-fatigue strength in saline by 50%. This increase in strength is attributed to a thicker oxide layer, residual compressive stresses, high strength of the surface layer, and lower propensity for intergranular corrosion in the nanocrystalline layer. Nanocrystallization also enhanced osteoblast attachment and proliferation. Intriguingly, wettability and surface roughness, the key parameters widely acknowledged for controlling the cellular response remained unchanged after nanocrystallization. The observed cellular behavior is explained in terms of the changes in electronic properties of the semiconducting passive oxide film present on the surface of 316L SS. Nanocrystallization increased the charge carrier density of the n-type oxide film likely preventing denaturation of the adsorbed cell-adhesive proteins such as fibronectin. In addition, a net positive charge developed on the otherwise neutral oxide layer, which is known to facilitate cellular adhesion. The role of changes in the electronic properties of the oxide films on metal substrates is thus highlighted in this work. This study demonstrates the advantages of nanocrystalline surface modification by SMAT for processing metallic biomaterials used in orthopedic implants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stereolithography is a solid freeform technique (SFF) that was introduced in the late 1980s. Although many other techniques have been developed since then, stereolithography remains one of the most powerful and versatile of all SFF techniques. It has the highest fabrication accuracy and an increasing number of materials that can be processed is becoming available. In this paper we discuss the characteristic features of the stereolithography technique and compare it to other SFF techniques. The biomedical applications of stereolithography are reviewed, as well as the biodegradable resin materials that have been developed for use with stereolithography. Finally, an overview of the application of stereolithography in preparing porous structures for tissue engineering is given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For a biomaterial to be considered suitable for bone repair it should ideally be both bioactive and have a capacity for controllable drug delivery; as such, mesoporous SiO2 glass has been proposed as a new class of bone regeneration material by virtue of its high drug-loading ability and generally good biocompatibility. It does, however, have less than optimum bioactivity and controllable drug delivery properties. In this study, we incorporated strontium (Sr) into mesoporous SiO2 in an effort to develop a bioactive mesoporous SrO–SiO2 (Sr–Si) glass with the capacity to deliver Sr2+ ions, as well as a drug, at a controlled rate, thereby producing a material better suited for bone repair. The effects of Sr2+ on the structure, physiochemistry, drug delivery and biological properties of mesoporous Sr–Si glass were investigated. The prepared mesoporous Sr–Si glass was found to have an excellent release profile of bioactive Sr2+ ions and dexamethasone, and the incorporation of Sr2+ improved structural properties, such as mesopore size, pore volume and specific surface area, as well as rate of dissolution and protein adsorption. The mesoporous Sr–Si glass had no cytotoxic effects and its release of Sr2+ and SiO44− ions enhanced alkaline phosphatase activity – a marker of osteogenic cell differentiation – in human bone mesenchymal stem cells. Mesoporous Sr–Si glasses can be prepared to porous scaffolds which show a more sustained drug release. This study suggests that incorporating Sr2+ into mesoporous SiO2 glass produces a material with a more optimal drug delivery profile coupled with improved bioactivity, making it an excellent material for bone repair applications. Keywords: Mesoporous Sr–Si glass; Drug delivery; Bioactivity; Bone repair; Scaffolds

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In response to scientific breakthroughs in biotechnology, the development of new technologies, and the demands of a hungry capitalist marketplace, patent law has expanded to accommodate a range of biological inventions. There has been much academic and public debate as to whether gene patents have a positive impact upon research and development, health-care, and the protection of the environment. In a satire of prevailing patenting practices, the English poet and part-time casino waitress, Donna MacLean, sought a patent application - GB0000180.0 - in respect of herself. She explained that she had satisfied the usual patent criteria - in that she was novel, inventive, and useful: It has taken 30 years of hard labor for me to discover and invent myself, and now I wish to protect my invention from unauthorized exploitation, genetic or otherwise. I am new: I have led a private existence and I have not made the invention of myself public. I am not obvious (2000: 18). MacLean said she had many industrial applications. ’For example, my genes can be used in medical research to extremely profitable ends - I therefore wish to have sole control of my own genetic material' (2000: 18). She observed in an interview: ’There's a kind of unpleasant, grasping, greedy atmosphere at the moment around the mapping of the human genome ... I wanted to see if a human being could protect their own genes in law' (Meek, 2000). This special issue of Law in Context charts a new era in the long-standing debate over biological inventions. In the wake of the expansion of patentable subject matter, there has been great strain placed upon patent criteria - such as ’novelty', ’inventive step', and ’utility'. Furthermore, there has been a new focus upon legal doctrines which facilitate access to patented inventions - like the defence of experimental use, the ’Bolar' exception, patent pooling, and compulsory licensing. There has been a concerted effort to renew patent law with an infusion of ethical principles dealing with informed consent and benefit sharing. There has also been a backlash against the commercialisation of biological inventions, and a call by some activists for the abolition of patents on genetic inventions. This collection considers a wide range of biological inventions - ranging from micro-organisms, plants and flowers and transgenic animals to genes, express sequence tags, and research tools, as well as genetic diagnostic tests and pharmaceutical drugs. It is thus an important corrective to much policy work, which has been limited in its purview to merely gene patents and biomedical research. This collection compares and contrasts the various approaches of a number of jurisdictions to the legal problems in respect of biological inventions. In particular, it looks at the complexities of the 1998 European Union Directive on the Legal Protection of Biotechnological Inventions, as well as decisions of member states, such as the Netherlands, and peripheral states, like Iceland. The edition considers US jurisprudence on patent law and policy, as well as recent developments in Canada. It also focuses upon recent developments in Australia - especially in the wake of parallel policy inquiries into gene patents and access to genetic resources.