903 resultados para Biomecânica animal
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Creación de un material docente (para web y plataformas móviles) pintando las estructuras anatómicas músculo-esqueléticas sobre caballos vivos para el aprendizaje de la anatomía funcional y biomecánica equina de forma sencilla, visual y didáctica.
Resumo:
O teste de novos biomateriais para aplicações clínicas em ortopedia, ou noutras áreas da medicina, em modelos animais vivos e sencientes, em prol do benefício humano, deve ser objecto de planeamento cuidado e ponderado, dado o conflito ético que se coloca. Compete-nos a nós, enquanto investigadores, garantir que as condições de vida, saúde e bem-estar são asseguradas. O uso de ovinos como modelo superior pré-clínico, para investigação em Ortopedia, tem-se evidenciado devido às suas características translacionais para a espécie humana. Neste estudo retrospectivo deu-se ênfase ao plano anestésico/ analgésico instituído em três tipos de técnicas cirúrgicas ortopédicas, realizadas em ovinos. Os animais intervencionados foram adquiridos com 2 meses de antecedência em relação às cirurgias e mantidos em rebanho, com condições condignas de abrigo e alimentação. As técnicas cirúrgicas inovadoras foram treinadas previamente em peças anatómicas adquiridas no matadouro. Todas as cirurgias e anestesias foram realizadas por médicos veterinários devidamente qualificados. Durante os períodos pós-operatórios os animais foram mantidos no Hospital Veterinário, sob vigilância e tratamento, após o que regressaram ao pasto. Considera-se que os protocolos anestésico e analgésico instituídos foram suficientes para eliminar a dor ortopédica/ neuropática causada pelas técnicas cirúrgicas referidas.
Resumo:
There occurs a biological response of the tissues of dental support, in answer to the external physiological forces and those realized during clinical treatments with orthodontical purposes. These forces differ from the first ones because they are continuous and time dependent. A great dental mobility is related to the degree of tissue organization of the periodontium system and the orthodontical movement must utilize this exceptional capacity of renewal and adaptation of the periodontium structures adequately. Therefore, through histological means a search was made to evaluate the succession of alterations of the periodontium system after the application of an orthodontical force on the molars of young rats and to interpret the standards of horizontal mobility and their consequences on the periodontium structures, biologically. An orthodontic force was applied on young rats utilizing steel wire placed in a ring form on a contact point between the first and second lower molars. The animals were sacrificed after 30 minutes, 1, 2, 6, 12, 24, 48, 72, 96 and 168 hours after the placement of the metal ring. After technical preparation, the microscopic slides were examined and the results were compared. In all the sections there was evidence of an intense metabolic activity. A gradual evolution of modification on the phenomenons had occurred.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência Animal - FMVA
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Pós-graduação em Bases Gerais da Cirurgia - FMB
Resumo:
Pós-graduação em Bases Gerais da Cirurgia - FMB
Resumo:
A bioactive and bioresorbable scaffold fabricated from medical grade poly (epsilon-caprolactone) and incorporating 20% beta-tricalcium phosphate (mPCL–TCP) was recently developed for bone regeneration at load bearing sites. In the present study, we aimed to evaluate bone ingrowth into mPCL–TCP in a large animal model of lumbar interbody fusion. Six pigs underwent a 2-level (L3/4; L5/6) anterior lumbar interbody fusion (ALIF) implanted with mPCL–TCP þ 0.6 mg rhBMP-2 as treatment group while four other pigs implanted with autogenous bone graft served as control. Computed tomographic scanning and histology revealed complete defect bridging in all (100%) specimen from the treatment group as early as 3 months. Histological evidence of continuing bone remodeling and maturation was observed at 6 months. In the control group, only partial bridging was observed at 3 months and only 50% of segments in this group showed complete defect bridging at 6 months. Furthermore, 25% of segments in the control group showed evidence of graft fracture, resorption and pseudoarthrosis. In contrast, no evidence of graft fractures, pseudoarthrosis or foreign body reaction was observed in the treatment group. These results reveal that mPCL–TCP scaffolds could act as bone graft substitutes by providing a suitable environment for bone regeneration in a dynamic load bearing setting such as in a porcine model of interbody spine fusion.
Resumo:
Conventional clinical therapies are unable to resolve osteochondral defects adequately, hence tissue engineering solutions are sought to address the challenge. A biphasic implant which was seeded with Mesenchymal Stem Cells (MSC) and coupled with an electrospun membrane was evaluated as an alternative. This dual phase construct comprised of a Polycaprolactone (PCL) cartilage scaffold and a Polycaprolactone - Tri Calcium Phosphate (PCL - TCP) osseous matrix. Autologous MSC was seeded into the entire implant via fibrin and the construct was inserted into critically sized osteochondral defects located at the medial condyle and patellar groove of pigs. The defect was resurfaced with a PCL - collagen electrospun mesh that served as a substitute for periosteal flap in preventing cell leakage. Controls either without implanted MSC or resurfacing membrane were included. After 6 months, cartilaginous repair was observed with a low occurrence of fibrocartilage at the medial condyle. Osteochondral repair was promoted and host cartilage degeneration was arrested as shown by the superior Glycosaminoglycan (GAG) maintenance. This positive morphological outcome was supported by a higher relative Young's modulus which indicated functional cartilage restoration. Bone in growth and remodeling occurred in all groups with a higher degree of mineralization in the experimental group. Tissue repair was compromised in the absence of the implanted cells or the resurfacing membrane. Moreover healing was inferior at the patellar groove as compared to the medial condyle and this was attributed to the native biomechanical features.
Resumo:
Remote monitoring of animal behaviour in the environment can assist in managing both the animal and its environmental impact. GPS collars which record animal locations with high temporal frequency allow researchers to monitor both animal behaviour and interactions with the environment. These ground-based sensors can be combined with remotely-sensed satellite images to understand animal-landscape interactions. The key to combining these technologies is communication methods such as wireless sensor networks (WSNs). We explore this concept using a case-study from an extensive cattle enterprise in northern Australia and demonstrate the potential for combining GPS collars and satellite images in a WSN to monitor behavioural preferences and social behaviour of cattle.
Resumo:
Remote monitoring of animal behaviour in the environment can assist in managing both the animal and its environmental impact. GPS collars which record animal locations with high temporal frequency allow researchers to monitor both animal behaviour and interactions with the environment. These ground-based sensors can be combined with remotely-sensed satellite images to understand animal-landscape interactions. The key to combining these technologies is communication methods such as wireless sensor networks (WSNs). We explore this concept using a case-study from an extensive cattle enterprise in northern Australia and demonstrate the potential for combining GPS collars and satellite images in a WSN to monitor behavioural preferences and social behaviour of cattle.
Resumo:
This paper investigates a mobile, wireless sensor/actuator network application for use in the cattle breeding industry. Our goal is to prevent fighting between bulls in on-farm breeding paddocks by autonomously applying appropriate stimuli when one bull approaches another bull. This is an important application because fighting between high-value animals such as bulls during breeding seasons causes significant financial loss to producers. Furthermore, there are significant challenges in this type of application because it requires dynamic animal state estimation, real-time actuation and efficient mobile wireless transmissions. We designed and implemented an animal state estimation algorithm based on a state-machine mechanism for each animal. Autonomous actuation is performed based on the estimated states of an animal relative to other animals. A simple, yet effective, wireless communication model has been proposed and implemented to achieve high delivery rates in mobile environments. We evaluated the performance of our design by both simulations and field experiments, which demonstrated the effectiveness of our autonomous animal control system.