961 resultados para Biomass residues
Resumo:
Biomethanation of herbaceous biomass feedstock has the potential to provide clean energy source for cooking and other activities in areas where such biomass availability predominates. A biomethanation concept that involves fermentation of biomass residues in three steps, occurring in three zones of the fermentor is described. This approach while attempting take advantage of multistage reactors simplifies the reactor operation and obviates the need for a high degree of process control or complex reactor design. Typical herbaceous biomass decompose with a rapid VFA flux initially (with a tendency to float) followed by a slower decomposition showing balanced process of VFA generation and its utilization by methanogens that colonize biomass slowly. The tendency to float at the initial stages is suppressed by allowing previous days feed to hold it below digester liquid which permits VFA to disperse into the digester liquid without causing process inhibition. This approach has been used to build and operate simple biomass digesters to provide cooking gas in rural areas with weed and agro-residues. With appropriate modifications, the same concept has been used for digesting municipal solid wastes in small towns where large fermentors are not viable. With further modifications this concept has been used for solid-liquid feed fermentors. Methanogen colonized leaf biomass has been used as biofilm support to treat coffee processing wastewater as well as crop litter alternately in a year. During summer it functions as a biomass based biogas plants operating in the three-zone mode while in winter, feeding biomass is suspended and high strength coffee processing wastewater is let into the fermentor achieving over 90% BOD reduction. The early field experience of these fermentors is presented.
Resumo:
As part of Pilot Project of KIP of CAS, a feasibility study of hydrogen production system using biomass residues is conducted. This study is based on a process of oxygen-rich air gasification of biomass in a downdraft gasifier plus CO-shift. The capacity of this system is 6.4 t biomass/d. Applying this system, it is expected that an annual production of 480 billion N m(3) H-2 will be generated for domestic supply in China. The capital cost of the plant used in this study is 1328$/(N m(3)/h) H-2 out, and product supply cost is 0.15$/N m(3) H-2. The cost sensitivity analysis on this system tells that electricity and catalyst cost are the two most important factors to influence hydrogen production cost.
Resumo:
Agricultural intensification has a strong impact on level of soil organic matter (SOM), microbial biomass stocks and microbial community structure in agro-ecosystems. The size of the microbial necromass C pool could be about 40 times that of the living microbial biomass C pool in soils. Due to the specificity, amino sugar analysis gives more important information on the relative contribution of fungal and bacterial residues to C sequestration potential of soils. Meanwhile, the relationship between microbial biomass and microbial necromass in soil and its ecological significance on SOM are not fully understood and likely to be very complex in grassland soils. This thesis focuses on the effects of tillage, grassland conversion intensities and fertilisation on microbial biomass, residues and community structure. The combined analyses of microbial biomass and residue formation of both fungi and bacteria provided a unique opportunity to study the effect of tillage, grassland conversion and fertilisation on soil microbial dynamics. In top soil at 0-30 cm layer, a reduction in tillage intensity by the GRT and NT treatments increased the accumulation of saprotrophic fungi in comparison with the MBT treatment. In contrast, the GRT and NT treatments promoted AMF at the expense of saprotrophic fungi in the bottom soil layer at 30-40 cm depth. The negative relationship between the ergosterol to microbial biomass C ratio and the fungal C to bacterial C ratio points to the importance of the relationship between saprotrophic fungi and biotrophic AMF for tillage-induced changes in microbial turnover of SOC. One-season cultivation of winter wheat with two tillage events led to a significant loss in SOC and microbial biomass C stocks at 0-40 cm depth in comparison with the permanent grassland, even 5 years after the tillage event. However, the tillage induced loss in microbial biomass C was roughly 40% less in the long-term than in the short-term of the current experiment, indicating a recovery process during grassland restoration. In general, mould board tillage and grassland conversion to maize monoculture promoted saprotrophic fungi at the expense of biotrophic AMF and bacteria compared to undisturbed grassland soils. Slurry application promoted bacterial residues as indicated by the decreases in both, the ergosterol to microbial biomass C ratio and the fungal C to bacterial C ratio. In addition, the lost microbial functional diversity due to tillage and maize monoculture was restored by slurry application both in arable and grassland soils. I conclude that the microbial biomass C/S ratio can be used as an additional indicator for a shift in microbial community. The strong relationships between microbial biomass and necromass indices points to the importance of saprotrophic fungi and biotrophic AMF for agricultural management induced effects on microbial turnover and ecosystem C storage. Quantitative information on exact biomass estimates of these two important fungal groups in soil is inevitably necessary to understand their different roles in SOM dynamics.
Resumo:
In 2014, Portugal was the seventh largest pellets producer in the World. Since the shortage of raw material is one of the major obstacles that the Portuguese sellets market faces, the need for a good assessment of biomass availability for energy purposes at both country and regional levels is reinforced. This work uses a Geographical Information System environment and remote sensing data to assess the availability and sustainability of forest biomass residues in a management unit with around 940 ha of maritime pine forest. The period considered goes from 2004 to 2015. The study area is located in Southwestern Portugal, close to a pellets factory; therefore the potential Contribution of the residual biomass generated in the management unit to the production of pellets is evaluated. An allometric function is used for the estimation of maritime pine above ground biomass. With this estimate, and considering several forest operations, the residual biomass available was assessed, according to stand composition and structure. This study shows that, when maritime pine forests are managed to produce wood, the amount of residues available for energy production is small (an average of 0.37 t ha -1 year -1 were generated in the study area between 2004 and 2015). As a contribution to the sustainability of the Portuguese pellets industries, new management models for maritime pine forests may be developed. The effect of the pinewood nematode on the availability of residual biomass can be clearly seen in this study. In the management unit considered, cuts were made to prevent dissemination of the disease. This contributes to a higher availability of forest residues in a specific period of time, but, in the medium term, they lead to a decrease in the amount of residues that can be used for energy purposes.
Resumo:
The integrated pilot-scale dimethyl ether (DME) synthesis system from corncob was demonstrated for modernizing utilization of biomass residues. The raw bio-syngas was obtained by the pyrolyzer/gasifier at the yield rate of 40-45 Nm(3)/h. The content of tar in the raw bio-syngas was decreased to less than 20 mg/Nm(3) by high temperature gasification of the pyrolysates under O-2-rich air. More than 70% CO2 in the raw bio-syngas was removed by pressure-swing adsorption unit (PSA). The bio-syngas (H-2/CO approximate to 1) was catalytically converted to DME in the fixed-bed tubular reactor directly over Cu/Zn/Al/HZSM-5 catalysts. CO conversion and space-time yield of DME were in the range of 82.0-73.6% and 124.3-203.8 kg/m(cat)(3)/h, respectively, with a similar DME selectivity when gas hourly space velocity (GHSV, volumetric flow rate of syngas at STP divided by the volume of catalyst) increased from 650 h(-1) to 1500 h(-1) at 260 degrees C and 4.3 MPa. And the selectivity to methanol and C-2(+) products was less than 0.65% under typical synthesis condition. The thermal energy conversion efficiency was ca. 32.0% and about 16.4% carbon in dried corncob was essentially converted to DME with the production cost of ca. (sic) 3737/ton DME. Cu (111) was assumed to be the active phase for DME synthesis, confirmed by X-ray diffraction (XRD) characterization.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica
Resumo:
Pós-graduação em Microbiologia Agropecuária - FCAV
Response of soil microbial biomass to 1,2-dichlorobenzene addition in the presence of plant residues
Resumo:
The impact of 1,2-dichlorobenzene on soil microbial biomass in the presence and absence of fresh plant residues (roots) was investigated by assaying total vital bacterial counts, vital fungel hyphal length, total culturable bacterial counts, and culturable fluorescent pseudomonads. Diversity of the fluorescent pseudomonads was investigated using fatty acid methyl ester (FAME) characterization in conjunction with metabolic profiling of the sampled culturable community (Biolog). Mineralization of [14C]1,2- dichlorobenzene was also assayed. Addition of fresh roots stimulated 1,2- dichlorobenzene mineralization by over 100%, with nearly 20% of the label mineralized in root-amended treatments by the termination of the experiment. Presence of roots also buffered any impacts of 1,2-dichlorobenzene on microbial numbers. In the absence of roots, 1,2-dichlorobenzene greatly stimulated total culturable bacteria and culturable pseudomonads in a concentration-dependent manner. 1,2-Dichlorobenzene, up to concentrations of 50 μg/g soil dry weight had little or no deleterious effects on microbial counts. The phenotypic diversity of the fluorescent pseudomonad population was unaffected by the treatments, even though fluorescent pseudomonad numbers were greatly stimulated by both roots and 1,2-dichlorobenzene. The presence of roots had no detectable impact on the bacterial community composition. No phenotypic shifts in the natural population were required to benefit from the presence of roots and 1,2-dichlorobenzene. The metabolic capacity of the culturable bacterial community was altered in the presence of roots but not in the presence of 1,2-dichlorobenzene. It is argued that the increased microbial biomass and shifts in metabolic capacity of the microbial biomass are responsible for enhanced degradation of 1,2-dichlorobenzene in the presence of decaying plant roots.
Resumo:
The production of agricultural and horticultural products requires the use of nitrogenous fertiliser that can cause pollution of surface and ground water and has a large carbon footprint as it is mainly produced from fossil fuels. The overall objective of this research project was to investigate fast pyrolysis and in-situ nitrogenolysis of biomass and biogenic residues as an alternative route to produce a sustainable solid slow release fertiliser mitigating the above stated problems. A variety of biomasses and biogenic residues were characterized by proximate analysis, ultimate analysis, thermogravimetric analysis (TGA) and Pyrolysis – Gas chromatography – Mass Spectroscopy (Py–GC–MS) for their potential use as feedstocks using beech wood as a reference material. Beech wood was virtually nitrogen free and therefore suitable as a reference material as added nitrogen can be identified as such while Dried Distillers Grains with Solubles (DDGS) and rape meal had a nitrogen content between 5.5wt.% and 6.1wt.% qualifying them as high nitrogen feedstocks. Fast pyrolysis and in-situ nitrogenolysis experiments were carried out in a continuously fed 1kg/h bubbling fluidized bed reactor at around 500°C quenching the pyrolysis vapours with isoparaffin. In-situ nitrogenolysis experiments were performed by adding ammonia gas to the fast pyrolysis reactor at nominal nitrogen addition rates between 5wt.%C and 20wt.%C based on the dry feedstock’s carbon content basis. Mass balances were established for the processing experiments. The fast pyrolysis and in-situ nitrogenolysis products were characterized by proximate analysis, ultimate analysis and GC– MS. High liquid yields and good mass balance closures of over 92% were obtained. The most suitable nitrogen addition rate for the in-situ nitrogenolysis experiments was determined to be 12wt.%C on dry feedstock carbon content basis. However, only a few nitrogen compounds that were formed during in-situ nitrogenolysis could be identified by GC–MS. A batch reactor process was developed to thermally solidify the fast pyrolysis and in-situ nitrogenolysis liquids of beech wood and Barley DDGS producing a brittle solid product. This was obtained at 150°C with an addition of 2.5wt% char (as catalyst) after a processing time of 1h. The batch reactor was also used for modifying and solidifying fast pyrolysis liquids derived from beech wood by adding urea or ammonium phosphate as post processing nitrogenolysis. The results showed that this type of combined approach was not suitable to produce a slow release fertiliser, because the solid product contained up to 65wt.% of highly water soluble nitrogen compounds that would be released instantly by rain. To complement the processing experiments a comparative study via Py–GC–MS with inert and reactive gas was performed with cellulose, hemicellulose, lignin and beech wood. This revealed that the presence of ammonia gas during analytical pyrolysis did not appear to have any direct impact on the decomposition products of the tested materials. The chromatograms obtained showed almost no differences between inert and ammonia gas experiments indicating that the reaction between ammonia and pyrolysis vapours does not occur instantly. A comparative study via Fourier Transformed Infrared Spectroscopy of solidified fast pyrolysis and in-situ nitrogenolysis products showed that there were some alterations in the spectra obtained. A shift in frequencies indicating C=O stretches typically related to the presence of carboxylic acids to C=O stretches related to amides was observed and no double or triple bonded nitrogen was detected. This indicates that organic acids reacted with ammonia and that no potentially harmful or non-biodegradable triple bonded nitrogen compounds were formed. The impact of solid slow release fertiliser (SRF) derived from pyrolysis and in-situ nitrogenolysis products from beech wood and Barley DDGS on microbial life in soils and plant growth was tested in cooperation with Rothamsted Research. The microbial incubation tests indicated that microbes can thrive on the SRFs produced, although some microbial species seem to have a reduced activity at very high concentrations of beech wood and Barley DDGS derived SRF. The plant tests (pot trials) showed that the application of SRF derived from beech wood and barley DDGS had no negative impact on germination or plant growth of rye grass. The fertilizing effect was proven by the dry matter yields in three harvests after 47 days, 89 days and 131 days. The findings of this research indicate that in general a slow release fertiliser can be produced from biomass and biogenic residues by in-situ nitrogenolysis. Nevertheless the findings also show that additional research is necessary to identify which compounds are formed during this process.
Resumo:
This research was carried for an EC supported project that aimed to produce ethyl levulinate as a diesel miscible biofuel from biomass by acid hydrolysis. The objective of this research was to explore thermal conversion technologies to recover further diesel miscible biofuels and/or other valuable products from the remaining solid acid hydrolysis residues (AHR). AHR consists of mainly lignin and humins and contains up to 80% of the original energy in the biomass. Fast pyrolysis and pyrolytic gasification of this low volatile content AHR was unsuccessful. However, successful air gasification of AHR gave a low heating value gas for use in engines for power or heat with the aim of producing all the utility requirements in any commercial implementation of the ethyl levulinate production process. In addition, successful fast pyrolysis of the original biomass gave organic liquid yields of up to 63.9 wt.% (dry feed basis) comparable to results achieved using a standard hardwood. The fast pyrolysis liquid can be used as a fuel or upgraded to biofuels. A novel molybdenum carbide catalyst was tested in fast pyrolysis to explore the potential for upgrading. Although there was no deoxygenation, some bio-oil properties were improved including viscosity, pH and homogeneity through decreasing sugars and increasing furanics and phenolics. AHR gasification was explored in a batch gasifier with a comparison with the original biomass. Refractory and low volatile content AHR gave relatively low gas yields (74.21 wt.%), low tar yields (5.27 wt.%) and high solid yields (20.52 wt.%). Air gasification gave gas heating values of around 5MJ/NM3, which is a typical value, but limitations of the equipment available restricted the extent of process and product analysis. In order to improve robustness of AHR powder for screw feeding into gasifiers, a new densification technique was developed based on mixing powder with bio-oil and curing the mixture at 150°C to polymerise the bio-oil.
Resumo:
Biomass and non-food crop residues are seen as relatively low cost and abundant renewable sources capable of making a large contribution to the world’s future energy and chemicals supply. Signifi cant quantities of ethanol are currently produced from biomass via biochemical processes, but thermochemical conversion processes offer greater potential to utilize the entire biomass source to produce a range of products. This chapter will review thermochemical gasifi cation and pyrolysis methods with a focus on hydrothermal liquefaction processes. Hydrothermal liquefaction is the most energetically advantageous thermochemical biomass conversion process. If the target is to produce sustainable liquid fuels and chemicals and reduce the impact of global warming as a result of carbon dioxide, nitrous oxide, and methane emissions (i.e., protect the natural environment), the use of “green” solvents, biocatalysts and heterogeneous catalysts must be the main R&D initiatives. As the biocrude produced from hydrothermal liquefaction is a complex mixture which is relatively viscous, corrosive, and unstable to oxidation (due to the presence of water and oxygenated compounds), additional upgrading processes are required to produce suitable biofuels and chemicals.
Resumo:
An Australian green power (AGP) company produces energy from burning biomass from the sugar industry and recycled wood waste, however alkali in biomass is released into a recirculating stream that forms a scale as it becomes more concentrated. This investigation has shown that the addition of Bayer liquor (alumina waste residue) successfully removes scale-forming species from the recirculating stream and thus has the potential to reduce the rate of scaling. Characterisation of the scale and Bayer precipitates has been performed using X-ray diffraction (XRD), infrared spectroscopy (IR) and inductively coupled plasma optical emission spectroscopy (ICP-OES).
Resumo:
We investigated the effect of maize residues and rice husk biochar on biomass production, fertiliser nitrogen recovery (FNR) and nitrous oxide (N2O) emissions for three different subtropical cropping soils. Maize residues at two rates (0 and 10 t ha−1) combined with three rates (0, 15 and 30 t ha-1) of rice husk biochar were added to three soil types in a pot trial with maize plants. Soil N2O emissions were monitored with static chambers for 91 days. Isotopic 15N-labelled urea was applied to the treatments without added crop residues to measure the FNR. Crop residue incorporation significantly reduced N uptake in all treatments but did not affect overall FNR. Rice husk biochar amendment had no effect on plant growth and N uptake but significantly reduced N2O and carbon dioxide (CO2) emissions in two of the three soils. The incorporation of crop residues had a contrasting effect on soil N2O emissions depending on the mineral N status of the soil. The study shows that effects of crop residues depend on soil properties at the time of application. Adding crop residues with a high C/N ratio to soil can immobilise N in the soil profile and hence reduce N uptake and/or total biomass production. Crop residue incorporation can either stimulate or reduce N2O emissions depending on the mineral N content of the soil. Crop residues pyrolysed to biochar can potentially stabilise native soil C (negative priming) and reduce N2O emissions from cropping soils thus providing climate change mitigation potential beyond the biochar C storage in soils. Incorporation of crop residues as an approach to recycle organic materials and reduce synthetic N fertiliser use in agricultural production requires a thorough evaluation, both in terms of biomass production and greenhouse gas emissions.
Resumo:
The widespread deployment of commercial-scale cellulosic ethanol currently hinges on developing and evaluating scalable processes whilst broadening feedstock options. This study investigates whole Eucalyptus grandis trees as a potential feedstock and demonstrates dilute acid pre-treatment (with steam explosion) followed by pre-saccharification simultaneous saccharification fermentation process (PSSF) as a suitable, scalable strategy for the production of bioethanol. Biomass was pre-treated in dilute H2SO4 at laboratory scale (0.1 kg) and pilot scale (10 kg) to evaluate the effect of combined severity factor (CSF) on pre-treatment effectiveness. Subsequently, pilot-scale pre-treated residues (15 wt.%) were converted to ethanol in a PSSF process at 2 L and 300 L scales. Good polynomial correlations (n = 2) of CSF with hemicellulose removal and glucan digestibility with a minimum R2 of 0.91 were recorded. The laboratory-scale 72 h glucan digestibility and glucose yield was 68.0% and 51.3%, respectively, from biomass pre-treated at 190 °C /15 min/ 4.8 wt.% H2SO4. Pilot-scale pre-treatment (180 °C/ 15 min/2.4 wt.% H2SO4 followed by steam explosion) delivered higher glucan digestibility (71.8%) and glucose yield (63.6%). However, the ethanol yields using PSSF were calculated at 82.5 and 113 kg/ton of dry biomass for the pilot and the laboratory scales, respectively. © 2016 Society of Chemical Industry and John Wiley & Sons, Ltd