996 resultados para Biomass equation


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lianas play a key role in many tropical forests ecosystems, contributing to community abundance, diversity and structure. Techniques to census lianas and estimate biomass have been used mainly in tropical forests. The aim of this study was to verify if different measurement location on the stem and inclusion criteria influence the estimations of liana abundance and biomass in Cerrado. The study was carried out at Itirapina fragment (ca 260 ha) located in Sao Paulo, Southeast Brazil. We measured all apparent ramets of rooted lianas by using different inclusion criteria: >= 0.5 cm in diameter at 30 cm basal area (D_30), and at 130 cm diameter breast height (DBH), in 36 transects (10 x 25 m). We compared the biomass using the allometric equation based on data from tropical florest take at 130 cm (DBH) and other The allometric biomass equation development to estimate the aboveground biomass of live lianas in tropical forests (DAP = 130 cm) was used. We tested the liana biomass, based on measurements taken at (D_30) using two different conversion equations. The results did not show significant differences in liana abundance and above ground biomass estimated applying the different criteria of inclusion However the biomass estimated from data collected at D_30 and converted into DAP showed a tendency to increase in biomass. Our findings suggest that the protocol used to the census of liana and the allometric biomass equation proposed to forests can be applied in the Cerrado.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is an increasing need to compare the results obtained with different methods of estimation of tree biomass in order to reduce the uncertainty in the assessment of forest biomass carbon. In this study, tree biomass was investigated in a 30-year-old Scots pine (Pinus sylvestris) (Young-Stand) and a 130-year-old mixed Norway spruce (Picea abies)-Scots pine stand (Mature-Stand) located in southern Finland (61º50' N, 24º22' E). In particular, a comparison of the results of different estimation methods was conducted to assess the reliability and suitability of their applications. For the trees in Mature-Stand, annual stem biomass increment fluctuated following a sigmoid equation, and the fitting curves reached a maximum level (from about 1 kg/yr for understorey spruce to 7 kg/yr for dominant pine) when the trees were 100 years old. Tree biomass was estimated to be about 70 Mg/ha in Young-Stand and about 220 Mg/ha in Mature-Stand. In the region (58.00-62.13 ºN, 14-34 ºE, ≤ 300 m a.s.l.) surrounding the study stands, the tree biomass accumulation in Norway spruce and Scots pine stands followed a sigmoid equation with stand age, with a maximum of 230 Mg/ha at the age of 140 years. In Mature-Stand, lichen biomass on the trees was 1.63 Mg/ha with more than half of the biomass occurring on dead branches, and the standing crop of litter lichen on the ground was about 0.09 Mg/ha. There were substantial differences among the results estimated by different methods in the stands. These results imply that a possible estimation error should be taken into account when calculating tree biomass in a stand with an indirect approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biomass yields of duck week (Lemna minor(L) was monitored in hydroponic media prepared by variously extracting 0.50, 1.00 and 2.00g of dried chicken manure per liter of city water (tap water) supply. The culture media consisting of aqueous extract of the various manure treatments were made up to 12 liters in all cases with tap water as control. Plastic baths of 25 liters capacity with 0.71 super(m2) surface area were used as culture facility. Each bath was stocked at a density of 30g super(m-2) with fresh weed samples (i.e 21.30g/bath). Maximum yields were obtained at all treatment levels and control on day 3 and based on the highest yield of 0.37gm super(-2)d super(-1) (dry matter) obtained at 1.00gL manure treatment which was however not significantly higher (P>0.05) than the 0.36gm super(-2)d super(-1) (dry matter) at 0.05gl super(-1) media manure content, an average manure level of 0.75l super(-1) was selected and used to determine the operational plant density. Thus fresh weights of 30 to 300gm super(-2) was grown in triplicate at 30g intervals for a period of 3 days. A regression equation of Y=2.6720+0.0021x with a corresponding maximum density or operational plant density of 266gm super(-2) and yield of 0.98gm super(-2), d super(-1) (dry matter) were obtained. Further growth trials were carried out at the operational density and manure levels of 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 and 2.00gl super(-1) media manure concentration giving a significantly higher yield (P<0.05) of 17gm super(-2), d super(-1) (dry matter). This yield was however doubled to between 2.21 and 2.24gm super(-2) d super(-1) (equivalent to 7.96 to 8.06mt.ha-1, Yr-1 dry matter on extrapolation) if 25% and 75% respectively of the total weed cover were harvested daily within the experimental period. The role of some dissolved plant nutrients (DPN) were also discussed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analyses of sex-specific yield per recruit and spawning stock biomass per recruit were conducted to evaluate the current status of the sailfish (Istiophorus platypterus) fishery in the waters off eastern Taiwan. Natural mortality rates estimated from Pauly’s empirical equation were 0.26/yr for females and 0.27/yr for males. The current fishing mortality rates were estimated as 0.24/yr and 0.43/yr for females and males, respectively, which are much lower than the estimated F0 .1 (0.62/yr and 0.79/yr for females and males, respectively) and FSSB40 (0.46/yr for females) which are commonly used as target reference points in fisheries management. The effects of the fishing mortality, natural mortality, and age at first capture on the estimates of biological reference points were evaluated by using the Monte Carlo simulation. The results indicate that failure to consider the uncertainty in parameters such as natural mortality or age at first capture may lead to the improper estimation of biological reference points. This study indicates the possibility of current fishing mortality exceeding the target biological reference points may be negligible for sailfish in the waters off eastern Taiwan. However, in view of the recent rapid increase in fishing effort, it is evident that the stock status and development of the fishery need to be closely monitore

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estimates of the Q/B ratio and parameters of equations to 'predict' Q/B values for 116 fish stocks in the Gulf of Salamanca, Colombia are presented. A compilation of these estimates available for Caribbean Sea fishes (264 stocks) is also provided for comparison purposes. General trends in the value of Q/B resulting from differences in the equation and parameter values used are briefly discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, length-frequency data on Spanish sardine (Sardinella aurita) from northeastern Venezuela were analyzed for the period 1967-1989. Average growth parameters for the von Bertalanffy equation were established as L sub( infinity )= 26.6 cm (TL) and K = 1.26 year super(-1). The number of recruits to the fishing area, estimated from length-structured Virtual Population Analysis, varied from <10 super(8) in the late 1960s to >10 super(9) at the end of the 1980s. Exploited biomass estimates for the same period varied from less than 20,000 t in the first year to more than 100,000 in 1989. Both recruitment and exploited biomass showed different seasonal patterns between 1976-1983 and 1984-1988. Despite some uncertainty regarding these estimates, it is considered that major population tendencies are adequately represented by this analysis

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Benthic biomass size spectra (BSS) and normalized biomass size spectra were constructed, and benthic secondary production was estimated by a size spectrum equation in the shallow waters in the East China Sea, ranging latitudinally from 40A degrees N to 29A degrees N. The BSS patterns were bimodal, two biomass peaks corresponding to meiofauna and macrofauna, respectively, separated by a trough of low biomass at 8-256 mu g individual dry weight which varied in position with median sediment particle size. The BSS also displayed bimodality within meiofauna size ranges, which in most stations was due to the relative proportions of nematodes and other meiofauna taxa. Re-analysis of data from sites in the UK, South Africa, and Antarctic showed a similar bimodality in the adult species body size distribution within the meiofauna size range. Macrofaunal production estimated by the size spectrum equation was very similar to the results of Brey90 empirical equation. However, these production values were much lower than those calculated by Brey01. Different individual dry-to-wet conversion ratios, temperature deviation, and macrofauna taxonomic composition might be responsible for the between-model differences. The macrofaunal P/B ratios calculated by this equation ranged from 0.3 to 3.4 which were in accordance with values from Northern Hemisphere mid-latitudes. Meiofaunal production estimates will need further empirical support.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de Mestrado em Ambiente, Saúde e Segurança.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aboveground biomass predictive equations were developed for a highly productive 47-year-old mixed Douglas-fir and western hemlock stand in southwest Washington State to characterize the preharvest stand attributes for the Fall River Long-Term Site Productivity Study. The equations were developed using detailed biomass data taken from 31 Douglas-fir and 11 western hemlock trees within the original stand. The stand had an average of 615 live trees per hectare, with an average dbh of 35.6 cm (39.1 cm for Douglas-fir and 33.3 cm for western hemlock) and an average total tree height of 31.6 m (32.8 m for Douglas-fir and 30.2 m for western hemlock). Equations developed were of the form In Y = b(1) + b(2) In dbh, where Y = biomass in kg, dbh = diameter in cm at 1.3 m height, b(1) = intercept, and b(2) = slope of equation. Each tree part was estimated separately and also combined into total aboveground biomass. The total aboveground biomass estimation equations were In Y = -0.9950 + 2.0765 In dbh for Douglas-fir, and In Y = -1.6612 + 2.2321 In dbh for western hemlock. The estimate of the aboveground live-free biomass was of 395 Mg ha(-1) (235 Mg ha(-1) for Douglas-fir and 160 Mg ha(-1) for western hemlock), with 9.5, 29.3, 12.9, 308, and 32.7 Mg ha(-1) in the foliage, live branches, dead branches, stem wood, and stem hark, respectively. When compared with biomass estimates from six other studies, ranging in age from 22 to 110 years and from 96.3 to 636 Mg ha(-1), the biomass of the Fall River site was relatively high for its age, indicating very high productivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current estimates of the total biomass in tropical rainforests vary considerably; this is due in large part to the different approaches that are used to calculate biomass. In this study we have used a canopy crane to measure the tree architectures in a 1 ha plot of complex mesophyll vine forest at Cape Tribulation, Australia. Methods were developed to measure and calculate the crown and stem biomass of six major species of tree and palm (Alstonia scholaris (Apocynaceae), Cleistanthus myrianthus (Euphorbiaceae), Endiandra microneura (Lauraceae), Myristica insipida (Myristicaceae), Acmena graveolens (Myrtaceae), Normanbya normanbyi (Arecaceae)) using the unique access provided by the crane. This has allowed the first non-destructive biomass estimate to be carried out for a forest of this type. Allometric equations which relate tree biomass to the measured variable 'diameter at breast height' were developed for the six species, and a general equation was also developed for trees on the plot. The general equation was similar in form to equations developed for tropical rainforests in Brazil and New Guinea. The species equations were applied at the level of families, the generalized equation was applied to the remaining species which allowed the biomass of a total of 680 trees to be calculated. This has provided a current estimate of 270 t ha-1 above-ground biomass at the Australian Canopy Crane site; a value comparable to lowland rainforests in Panama and French Guiana. Using the same tree database seven alternative allometric equations (literature equations for tropical rainforests) were used to calculate the site biomass, the range was large (252-446 t ha-1) with only three equations providing estimates within 34 t ha-1 (12.5%) of the site value. Our use of multiple species-specific allometric equations has provided a site estimate only slightly larger (1%) than that obtained using allometric equations developed specifically for tropical wet rainforests. We have demonstrated that it is possible to non-destructively measure the biomass in a complex forest using an on-site canopy crane. In conjunction the development of crown maps and a detailed tree architecture database allows changes in forest structure to be followed quantitatively. © 2007 Ecological Society of Australia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results of studies during Project of an international expedition onboard R/V Vladimir Parshin in September-October 2005 are presented. Intensive development of Bacillariophyceae and Dynophyceae was recorded in coastal waters of Bulgaria, Turkey, and in the Danube River delta during period of investigations. Increase in algae population was accompanied by rising of chlorophyll a concentration up to 2.0-5.5 µg/l. In the deep water region it did not exceed 0.5 µg/l. Phytoplankton growth rate in the surface water layer varied from 0.1 to 1.0 1/day. This parameter and NO2+NO3 concentration, as well as the silicon concentration were correlative, as was described by the Michaelis-Menten equation. Phytoplankton growth was affected by basic nutrients. Zooplankton grazing varied from 0.10 to 0.69 1/day and average values in different regions varied by 1.5 times. Microalgae size range is one of major factors of grazing regulation. Rate of phytoplankton consumption was decreasing with increasing the largest diatom Pseudosolenia calcar-avis impact on total biomass of nano- and microphytoplankton.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The "15BO1997001" dataset is based on samples collected in the spring of 1997. The whole dataset is composed of 66 samples (from 27 stations of National Monitoring Sampling Grid) with data of zooplankton species composition, abundance and biomass. Samples were collected in discrete layers 0-10, 0-20, 0-50, 10-25, 25-50, 50-100 and from bottom up to the surface at depths depending on water column stratification and the thermocline depth. The collected material was analysed using the method of Dimov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972 ). The biomass was estimated as wet weight by Petipa, 1959 (based on species specific wet weight). Wet weight values were transformed to dry weight using the equation DW=0.16*WW as suggested by Vinogradov & Shushkina, 1987. The collected material was analysed using the method of Dimov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972 ). The biomass was estimated as wet weight by Petipa, 1959 ussing standard average weight of each species in mg/m3. WW were converted to DW by equation DW=0.16*WW (Vinogradov ME, Sushkina EA, 1987).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spectra of light absorption by suspended matter, phytoplankton, and detritus in the central and coastal parts of the Black Sea over the spring period (March-April 1995) were determined. Vertical homogeneity of the upper 40 m layer with respect to parameters in study was noted. Value of light absorption by phytoplankton normalized with respect to chlorophyll a was virtually independent of chlorophyll a concentration. A linear relationship between light absorption by phytoplankton and chlorophyll a concentration was established at the red spectral maximum. It is described by the equation y = 0.0153x; R**2 = 0.61. The average ratio of absorption values in the peaks was 2.29. Contribution of detritus to total light absorption at wavelength 440 nm was 23-62% regardless of depth and chlorophyll a concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The "CoMSBlack92" dataset is based on samples collected in the summer of 1992 along the Bulgarian coast including coastal and open sea areas. The whole dataset is composed of 79 samples (28 stations) with data of zooplankton species composition, abundance and biomass. Sampling for zooplankton was performed from bottom up to the surface at standard depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 ?m. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Sampling volume was estimated by multiplying the mouth area with the wire length. The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972 ). The biomass was estimated as wet weight by Petipa, 1959 (based on species specific wet weight). Wet weight values were transformed to dry weight using the equation DW=0.16*WW as suggested by Vinogradov & Shushkina, 1987. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. The biomass was estimated as wet weight by Petipa, 1959 ussing standard average weight of each species in mg/m**3.