949 resultados para Biomarker stratification


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Development of colorectal cancer occurs via a number of key pathways, with the clinicopathological features of specific subgroups being driven by underlying molecular changes. Mutations in key genes within the network of signalling pathways have been identified; however, therapeutic strategies to target these aberrations remain limited. As understanding of the biology of colorectal cancer has improved, this has led to a move toward broader genomic testing, collaborative research and innovative, adaptive clinical trial design. Recent developments in therapy include the routine adoption of wider mutational spectrum testing prior to use of targeted therapies and the first promise of effective immunotherapy for colorectal cancer patients. This review details current biomarkers in colorectal cancer for molecular stratification and for treatment allocation purposes, including open and planned precision medicine trials. Advances in our understanding, therapeutic strategy and technology will also be outlined.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND & AIMS: The risk of progression of Barrett's esophagus (BE) to esophageal adenocarcinoma (EAC) is low and difficult to calculate. Accurate tools to determine risk are needed to optimize surveillance and intervention. We assessed the ability of candidate biomarkers to predict which cases of BE will progress to EAC or high-grade dysplasia and identified those that can be measured in formalin-fixed tissues. METHODS: We analyzed data from a nested case-control study performed using the population-based Northern Ireland BE Register (1993-2005). Cases who progressed to EAC (n = 89) or high-grade dysplasia =6 months after diagnosis with BE were matched to controls (nonprogressors, n = 291), for age, sex, and year of BE diagnosis. Established biomarkers (abnormal DNA content, p53, and cyclin A expression) and new biomarkers (levels of sialyl Lewis(a), Lewis(x), and Aspergillus oryzae lectin [AOL] and binding of wheat germ agglutinin) were assessed in paraffin-embedded tissue samples from patients with a first diagnosis of BE. Conditional logistic regression analysis was applied to assess odds of progression for patients with dysplastic and nondysplastic BE, based on biomarker status. RESULTS: Low-grade dysplasia and all biomarkers tested, other than Lewis(x), were associated with risk of EAC or high-grade dysplasia. In backward selection, a panel comprising low-grade dysplasia, abnormal DNA ploidy, and AOL most accurately identified progressors and nonprogressors. The adjusted odds ratio for progression of patients with BE with low-grade dysplasia was 3.74 (95% confidence interval, 2.43-5.79) for each additional biomarker and the risk increased by 2.99 for each additional factor (95% confidence interval, 1.72-5.20) in patients without dysplasia. CONCLUSIONS: Low-grade dysplasia, abnormal DNA ploidy, and AOL can be used to identify patients with BE most likely to develop EAC or high-grade dysplasia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Ineffective risk stratification can delay diagnosis of serious disease in patients with hematuria. We applied a systems biology approach to analyze clinical, demographic and biomarker measurements (n = 29) collected from 157 hematuric patients: 80 urothelial cancer (UC) and 77 controls with confounding pathologies.

Methods: On the basis of biomarkers, we conducted agglomerative hierarchical clustering to identify patient and biomarker clusters. We then explored the relationship between the patient clusters and clinical characteristics using Chi-square analyses. We determined classification errors and areas under the receiver operating curve of Random Forest Classifiers (RFC) for patient subpopulations using the biomarker clusters to reduce the dimensionality of the data.

Results: Agglomerative clustering identified five patient clusters and seven biomarker clusters. Final diagnoses categories were non-randomly distributed across the five patient clusters. In addition, two of the patient clusters were enriched with patients with ‘low cancer-risk’ characteristics. The biomarkers which contributed to the diagnostic classifiers for these two patient clusters were similar. In contrast, three of the patient clusters were significantly enriched with patients harboring ‘high cancer-risk” characteristics including proteinuria, aggressive pathological stage and grade, and malignant cytology. Patients in these three clusters included controls, that is, patients with other serious disease and patients with cancers other than UC. Biomarkers which contributed to the diagnostic classifiers for the largest ‘high cancer- risk’ cluster were different than those contributing to the classifiers for the ‘low cancer-risk’ clusters. Biomarkers which contributed to subpopulations that were split according to smoking status, gender and medication were different.

Conclusions: The systems biology approach applied in this study allowed the hematuric patients to cluster naturally on the basis of the heterogeneity within their biomarker data, into five distinct risk subpopulations. Our findings highlight an approach with the promise to unlock the potential of biomarkers. This will be especially valuable in the field of diagnostic bladder cancer where biomarkers are urgently required. Clinicians could interpret risk classification scores in the context of clinical parameters at the time of triage. This could reduce cystoscopies and enable priority diagnosis of aggressive diseases, leading to improved patient outcomes at reduced costs. © 2013 Emmert-Streib et al; licensee BioMed Central Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern cancer research on prognostic and predictive biomarkers demands the integration of established and emerging high-throughput technologies. However, these data are meaningless unless carefully integrated with patient clinical outcome and epidemiological information. Integrated datasets hold the key to discovering new biomarkers and therapeutic targets in cancer. We have developed a novel approach and set of methods for integrating and interrogating phenomic, genomic and clinical data sets to facilitate cancer biomarker discovery and patient stratification. Applied to a known paradigm, the biological and clinical relevance of TP53, PICan was able to recapitulate the known biomarker status and prognostic significance at a DNA, RNA and protein levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The UK Refractory Asthma Stratification Programme(RASP-UK) will explore novel biomarker stratificationstrategies in severe asthma to improve clinicalmanagement and accelerate development of newtherapies. Prior asthma mechanistic studies have notstratified on inflammatory phenotype and theunderstanding of pathophysiological mechanisms inasthma without Type 2 cytokine inflammation is limited.RASP-UK will objectively assess adherence tocorticosteroids (CS) and examine a novel compositebiomarker strategy to optimise CS dose; this will alsoaddress what proportion of patients with severe asthmahave persistent symptoms without eosinophilic airwaysinflammation after progressive CS withdrawal. There will be interactive partnership with the pharmaceutical industry to facilitate access to stratified populations for novel therapeutic studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sinking particles through the pelagic ocean have been traditionally considered the most important vehicle by which the biological pump sequesters carbon in the ocean interior. Nevertheless, regional scale variability in particle flux is a major outstanding issue in oceanography. 5 Here, we have studied the regional and temporal variability of total particulate organic matter fluxes, as well as chloropigment and total hydrolyzed amino acid (THAA) compositions and fluxes in the Canary Current region, between 20–30 N, during two contrasting periods: August 2006, characterized by warm and stratified waters, but also intense winds which enhanced eddy development south of the Canary Islands, 10 and February 2007, characterized by colder waters, less stratification and higher productivity. We found that the eddy-field generated south of the Canary Islands enhanced by >2 times particulate organic carbon (POC) export with respect to stations (FF; farfield) outside the eddy-field influence. We also observed flux increases of one order of magnitude in chloropigment and 70% in THAA in the eddy-field relative to FF stations. 15 Principal Components Analysis (PCA) was performed to assess changes in particulate organic matter composition between stations. At eddy-field stations, higher chlorophyll enrichment reflected “fresher” material, while at FF stations a higher proportion of pheophytin indicated greater degradation due to microbes and microzooplankton. PCA also suggests that phytoplankton community structure, particularly the dominance of 20 diatoms versus carbonate-rich plankton, is the major factor influencing the POC export within the eddy field. In February, POC export fluxes were the highest ever reported for this area, reaching values of 15 mmolCm−2 d−1 at 200m depth. Compositional changes in pigments and THAA indicate that the source of sinking particles varies zonally and meridionally and suggest that sinking particles were more degraded at 25 near-coastal stations relative to open ocean stations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] Sinking particles through the pelagic ocean have been traditionally considered the most important vehicle by which the biological pump sequesters carbon in the ocean interior. Nevertheless, regional scale variability in particle flux is a major outstanding issue in oceanography. Here, we have studied the regional and temporal variability of total particulate organic matter fluxes, as well as chloropigment and total hydrolyzed amino acid (THAA) compositions and fluxes in the Canary Current region, between 20?30_ N, during two contrasting periods: August 2006, characterized by warm and stratified waters, but also intense winds which enhanced eddy development south of the Canary Islands, and February 2007, characterized by colder waters, less stratification and higher productivity. We found that the eddyfield generated south of the Canary Islands enhanced by >2 times particulate organic carbon (POC) export with respect to stations (FF; far-field) outside the eddy-field influence. We also observed flux increases of one order of magnitude in chloropigment and 2 times in THAA in the eddy-field relative to FF stations. Principal Components Analysis (PCA) was performed to assess changes in particulate organic matter composition between stations. At eddy-field stations, higher chlorophyll enrichment reflected ?fresher? material, while at FF stations a higher proportion of pheophytin indicated greater degradation due to microbes and microzooplankton. PCA also suggests that phytoplankton community structure, particularly the dominance of diatoms versus carbonate-rich plankton, is the major factor influencing the POC export within the eddy field. In February, POC export POC export within the eddy field. In February, POC export fluxes were the highest ever reported for this area, reaching values of _15 mmolCm?2 d?1 at 200m depth. Compositional changes in pigments and THAA indicate that the source of sinking particles varies zonally and meridionally and suggest that sinking particles were more degraded at near-coastal stations relative to open ocean stations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] It is generally assumed that episodic nutrient pulses by cyclonic eddies into surface waters support a significant fraction of the primary production in subtropical low-nutrient environments in the northern hemisphere. However, contradictory results related to the influence of eddies on particulate organic carbon (POC) export have been reported. As a step toward understanding the complex mechanisms that control export of material within eddies, we present here results from a sediment trap mooring deployed within the path of cyclonic eddies generated near the Canary Islands over a 1.5-year period. We find that, during summer and autumn (when surface stratification is stronger, eddies are more intense, and a relative enrichment in CaCO3 forming organisms occurs), POC export to the deep ocean was 2–4 times higher than observed for the rest of the year. On the contrary, during winter and spring (when mixing is strongest and the seasonal phytoplankton bloom occurs), no significant enhancement of POC export associated with eddies was observed. Our biomarker results suggest that a large fraction of the material exported from surface waters during the late-winter bloom is either recycled in the mesopelagic zone or bypassed by migrant zooplankton to the deep scattering layer, where it would disaggregate to smaller particles or be excreted as dissolved organic carbon. Cyclonic eddies, however, would enhance carbon export below 1000 m depth during the summer stratification period, when eddies are more intense and frequent, highlighting the important role of eddies and their different biological communities on the regional carbon cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to determine the role of saliva-derived biomarkers and periodontal pathogens during periodontal disease progression (PDP). One hundred human participants were recruited into a 12-month investigation. They were seen bi-monthly for saliva and clinical measures and bi-annually for subtraction radiography, serum and plaque biofilm assessments. Saliva and serum were analyzed with protein arrays for 14 pro-inflammatory and bone turnover markers, while qPCR was used for detection of biofilm. A hierarchical clustering algorithm was used to group study participants based on clinical, microbiological, salivary/serum biomarkers, and PDP. Eighty-three individuals completed the six-month monitoring phase, with 39 [corrected] exhibiting PDP, while 44 [corrected] demonstrated stability. Participants assembled into three clusters based on periodontal pathogens, serum and salivary biomarkers. Cluster 1 members displayed high salivary biomarkers and biofilm; 71% [corrected] of these individuals were undergoing PDP. Cluster 2 members displayed low biofilm and biomarker levels; 76% [corrected] of these individuals were stable. Cluster 3 members were not discriminated by PDP status; however, cluster stratification followed groups 1 and 2 based on thresholds of salivary biomarkers and biofilm pathogens. The association of cluster membership to PDP was highly significant (p < 0.0007). [corrected] The use of salivary and biofilm biomarkers offers potential for the identification of PDP or stability (ClinicalTrials.gov number, CT00277745).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION Treatment failure in acute myeloid leukemia is probably caused by the presence of leukemia initiating cells, also referred to as leukemic stem cells, at diagnosis and their persistence after therapy. Specific identification of leukemia stem cells and their discrimination from normal hematopoietic stem cells would greatly contribute to risk stratification and could predict possible relapses. RESULTS For identification of leukemic stem cells, we developed flow cytometric methods using leukemic stem cell associated markers and newly-defined (light scatter) aberrancies. The nature of the putative leukemic stem cells and normal hematopoietic stem cells, present in the same patient's bone marrow, was demonstrated in eight patients by the presence or absence of molecular aberrancies and/or leukemic engraftment in NOD-SCID IL-2Rγ-/- mice. At diagnosis (n=88), the frequency of the thus defined neoplastic part of CD34+CD38- putative stem cell compartment had a strong prognostic impact, while the neoplastic parts of the CD34+CD38+ and CD34- putative stem cell compartments had no prognostic impact at all. After different courses of therapy, higher percentages of neoplastic CD34+CD38- cells in complete remission strongly correlated with shorter patient survival (n=91). Moreover, combining neoplastic CD34+CD38- frequencies with frequencies of minimal residual disease cells (n=91), which reflect the total neoplastic burden, revealed four patient groups with different survival. CONCLUSION AND PERSPECTIVE Discrimination between putative leukemia stem cells and normal hematopoietic stem cells in this large-scale study allowed to demonstrate the clinical importance of putative CD34+CD38- leukemia stem cells in AML. Moreover, it offers new opportunities for the development of therapies directed against leukemia stem cells, that would spare normal hematopoietic stem cells, and, moreover, enables in vivo and ex vivo screening for potential efficacy and toxicity of new therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE Blood-borne biomarkers reflecting atherosclerotic plaque burden have great potential to improve clinical management of atherosclerotic coronary artery disease and acute coronary syndrome (ACS). APPROACH AND RESULTS Using data integration from gene expression profiling of coronary thrombi versus peripheral blood mononuclear cells and proteomic analysis of atherosclerotic plaque-derived secretomes versus healthy tissue secretomes, we identified fatty acid-binding protein 4 (FABP4) as a biomarker candidate for coronary artery disease. Its diagnostic and prognostic performance was validated in 3 different clinical settings: (1) in a cross-sectional cohort of patients with stable coronary artery disease, ACS, and healthy individuals (n=820), (2) in a nested case-control cohort of patients with ACS with 30-day follow-up (n=200), and (3) in a population-based nested case-control cohort of asymptomatic individuals with 5-year follow-up (n=414). Circulating FABP4 was marginally higher in patients with ST-segment-elevation myocardial infarction (24.9 ng/mL) compared with controls (23.4 ng/mL; P=0.01). However, elevated FABP4 was associated with adverse secondary cerebrovascular or cardiovascular events during 30-day follow-up after index ACS, independent of age, sex, renal function, and body mass index (odds ratio, 1.7; 95% confidence interval, 1.1-2.5; P=0.02). Circulating FABP4 predicted adverse events with similar prognostic performance as the GRACE in-hospital risk score or N-terminal pro-brain natriuretic peptide. Finally, no significant difference between baseline FABP4 was found in asymptomatic individuals with or without coronary events during 5-year follow-up. CONCLUSIONS Circulating FABP4 may prove useful as a prognostic biomarker in risk stratification of patients with ACS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The middle Paleocene through early Eocene long-term gradual warming was superimposed by several transient warming events, such as the Paleocene-Eocene Thermal Maximum (PETM) and Eocene Thermal Maximum 2 (ETM2). Both events show evidence for extreme global warming associated with a major injection of carbon into the ocean-atmosphere system, but the mechanisms of carbon injection and many aspects of the environmental response are still poorly understood. In this study, we analyzed the concentration and stable carbon isotopic (d13C) composition of several sulfur-bound biomarkers derived from marine photoautotrophs, deposited in the Arctic Ocean at ~85°N, during ETM2. The presence of sulfur-bound biomarkers across this event points toward high primary productivity and anoxic bottom water conditions. The previously reported presence of isorenieratene derivatives indicates euxinic conditions in the photic zone, likely caused by a combination of enhanced primary productivity and salinity stratification. The negative carbon isotope excursion measured at the onset of ETM2 for several biomarkers, ranges between 3 per mil and 4.5 per mil, much larger than the ~1.4 per mil recorded in marine carbonates elsewhere, suggesting substantial enhanced isotopic fractionation by the primary producers likely due to a significant rise in pCO2. In the absence of biogenic carbonates in the ETM2 section of our core we use coeval planktonic d13C from elsewhere to estimate surface water d13C in the Arctic Ocean and then apply the relation between isotopic fractionation and pCO2, originally calibrated for haptophyte alkenones, to three selected organic biomarkers (i.e., S-bound phytane, C35 hopane, and a C25 highly branched isoprenoid). This yields pCO2 values potentially in the range of four times preindustrial levels. However, these estimates are uncertain because of a lack of knowledge on the importance of pCO2 on photosynthetic isotopic fractionation.