807 resultados para Biology, Ecology|Biology, Zoology|Environmental Sciences
Resumo:
This study investigated how harvest and water management affected the ecology of the Pig Frog, Rana grylio. It also examined how mercury levels in leg muscle tissue vary spatially across the Everglades. Rana grylio is an intermediate link in the Everglades food web. Although common, this inconspicuous species can be affected by three forms of anthropogenic disturbance: harvest, water management and mercury contamination. This frog is harvested both commercially and recreationally for its legs, is aquatic and thus may be susceptible to water management practices, and can transfer mercury throughout the Everglades food web. ^ This two-year study took place in three major regions: Everglades National Park (ENP), Water Conservation Areas 3A (A), and Water Conservation Area 3B (B). The study categorized the three sites by their relative harvest level and hydroperiod. During the spring of 2001, areas of the Everglades dried completely. On a regional and local scale Pig Frog abundance was highest in Site A, the longest hydroperiod, heavily harvested site, followed by ENP and B. More frogs were found along survey transects and in capture-recapture plots before the dry-down than after the dry-down in Sites ENP and B. Individual growth patterns were similar across all sites, suggesting differences in body size may be due to selective harvest. Frogs from Site A, the flooded and harvested site, had no differences in survival rates between adults and juveniles. Site B populations shifted from a juvenile to adult dominated population after the dry-down. Dry-downs appeared to affect survival rates more than harvest. ^ Total mercury in frog leg tissue was highest in protected areas of Everglades National Park with a maximum concentration of 2.3 mg/kg wet mass where harvesting is prohibited. Similar spatial patterns in mercury levels were found among pig frogs and other wildlife throughout parts of the Everglades. Pig Frogs may be transferring substantial levels of mercury to other wildlife species in ENP. ^ In summary, although it was found that abundance and survival were reduced by dry-down, lack of adult size classes in Site A, suggest harvest also plays a role in regulating population structure. ^
Resumo:
Notebook of practical activities in Ecology during the 2on course of Biology career.
Resumo:
Professor Emeritus David Firmage, Department of Biology and Environmental Studies. Reading Looking for Alaska by Peter Jenkins
Resumo:
Bibliography: p. 607-609.
Resumo:
Mode of access: Internet.
Resumo:
Recently it has been proposed that the evaluation of effects of pollutants on aquatic organisms can provide an early warning system of potential environmental and human health risks (NRC 1991). Unfortunately there are few methods available to aquatic biologists to conduct assessments of the effects of pollutants on aquatic animal community health. The primary goal of this research was to develop and evaluate the feasibility of such a method. Specifically, the primary objective of this study was to develop a prototype rapid bioassessment technique similar to the Index of Biotic Integrity (IBI) for the upper Texas and Northwestern Gulf of Mexico coastal tributaries. The IBI consists of a series of "metrics" which describes specific attributes of the aquatic community. Each of these metrics are given a score which is then subtotaled to derive a total assessment of the "health" of the aquatic community. This IBI procedure may provide an additional assessment tool for professionals in water quality management.^ The experimental design consisted primarily of compiling previously collected data from monitoring conducted by the Texas Natural Resource Conservation Commission (TNRCC) at five bayous classified according to potential for anthropogenic impact and salinity regime. Standardized hydrological, chemical, and biological monitoring had been conducted in each of these watersheds. The identification and evaluation of candidate metrics for inclusion in the estuarine IBI was conducted through the use of correlation analysis, cluster analysis, stepwise and normal discriminant analysis, and evaluation of cumulative distribution frequencies. Scores of each included metric were determined based on exceedances of specific percentiles. Individual scores were summed and a total IBI score and rank for the community computed.^ Results of these analyses yielded the proposed metrics and rankings listed in this report. Based on the results of this study, incorporation of an estuarine IBI method as a water quality assessment tool is warranted. Adopted metrics were correlated to seasonal trends and less so to salinity gradients observed during the study (0-25 ppt). Further refinement of this method is needed using a larger more inclusive data set which includes additional habitat types, salinity ranges, and temporal variation. ^
Resumo:
There is evidence that ultraviolet radiation (UVR) is increasing over certain locations on the Earth's surface. Of primary concern is the annual pattern of ozone depletion over Antarctica and the Southern Ocean. Reduction of ozone concentration selectively limits absorption of solar UV-B (290–320 nm), resulting in higher irradiance at the Earth's surface. The effects of ozone depletion on the human population and natural ecosystems, particularly the marine environment, are a matter of considerable concern. Indeed, marine plankton may serve as sensitive indicators of ozone depletion and UV-B fluctuations. Direct biological effects of UVR result from absorption of UV-B by DNA. Once absorbed, energy is dissipated by a variety of pathways, including covalent chemical reactions leading to the formation of photoproducts. The major types of photoproduct formed are cyclobutyl pyrimidine dimer (CPD) and pyrimidine(6-4)pyrimidone dimer [(6-4)PD]. Marine plankton repair these photoproducts using light-dependent photoenzymatic repair or nucleotide excision repair. The studies here show that fluctuations in CPD concentrations in the marine environment at Palmer Station, Antarctica correlate well with ozone concentration and UV-B irradiance at the Earth's surface. A comparison of photoproduct levels in marine plankton and DNA dosimeters show that bacterioplankton display higher resistance to solar UVR than phytoplankton in an ozone depleted environment. DNA damage in marine microorganisms was investigated during two separate latitudinal transects which covered a total range of 140°. We observed the same pattern of change in DNA damage levels in dosimeters and marine plankton as measured using two distinct quantitative techniques. Results from the transects show that differences in photosensitivity exist in marine plankton collected under varying UVR environments. Laboratory studies of Antarctic bacterial isolates confirm that marine bacterioplankton possess differences in survival, DNA damage induction, and repair following exposure to UVR. Results from DNA damage measurements during ozone season, along a latitudinal gradient, and in marine bacterial isolates suggest that changes in environmental UVR correlate with changes in UV-B induced DNA damage in marine microorganisms. Differences in the ability to tolerate UVR stress under different environmental conditions may determine the composition of the microbial communities inhabiting those environments. ^
Resumo:
The present study was carried out to investigate the cytogenetic effects of therapeutic exposure to radioiodine preceded by rhTSH in an animal model. Three groups of Wistar rats (n = 6) were used: one group was treated only with I-131 (11.1 MBq/animal); the other two groups received rhTSH (1.2 mu g/rat of either Thyrogen or rhTSH-IPEN, respectively) 24 h before administration of radioiodine. The percentage of lymphocytes with chromosome aberrations and the average number of aberrations and of dicentrics per cell were determined on blood samples collected 24 h, 7 and 30 days after administration of I-131. The data show that the treatment with radioiodine alone or associated with rhTSH resulted in a greater quantity of chromosome alterations in relation to basal values after 24 h, with a gradual decline after 7 and 30 days of treatment. An increase in chromosome alterations was also seen after rhTSH treatment alone. Neither of the treatments, i.e., with I-131 alone or associated with hormone, resulted in an aneugenic effect or influenced the kinetics of cellular proliferation in rat blood lymphocytes. There was no significant difference between the cytogenetic effects of Thyrogen and rhTSH-IPEN treatment. These data suggest that the treatment with radioiodine, associated or not with rhTSH, affects to a limited extent a relatively small number of cells although the occurrence of late stochastic effects could not be discarded.
Resumo:
Incluye Bibliografía
Resumo:
Microplastics are omnipresent in the oceans and generally have negative impacts on the biota. However, flotsam may increase the availability of hard substrates, which are considered a limiting resource for some oceanic species, e.g. as oviposition sites for the ocean insect Halobates. This study describes the use of plastic pellets as an oviposition site for Halobates micans and discusses possible effects on its abundance and dispersion. Inspection of egg masses on stranded particles on beaches revealed that a mean of 24% (from 0% to 62%) of the pellets bore eggs (mean of 5 and max. of 48 eggs per pellet). Most eggs (63%) contained embryos, while 37% were empty egg shells. This shows that even small plastic particles are used as oviposition site by H. micans, and that marine litter may have a positive effect over the abundance and dispersion of this species. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Information on B-10 distribution in normal tissues is crucial to any further development of boron neutron capture therapy (BNCT). The goal of this study was to investigate the in vitro and in vivo boron biodistribution in B16F10 murine melanoma and normal tissues as a model for human melanoma treatment by a simple and rapid colorimetric method, which was validated by HR-ICP-MS. The B16F10 melanoma cell line showed higher melanin content than human melanocytes, demonstrating a greater potential for boronophenylalanine uptake. The melanocytes showed a moderate viability decrease in the first few minutes after BNCT application, stabilizing after 75 min, whereas the B16F10 melanoma showed the greatest intracellular boron concentration at 150 min after application, indicating a different boron uptake of melanoma cells compared to normal melanocytes. Moreover, at this time, the increase in boron uptake in melanoma cells was approximately 1.6 times higher than that in normal melanocytes. The B-10 concentration in the blood of mice bearing B16F10 melanoma increased until 90 min after BNCT application and then decreased after 120 min, and remained low until the 240th minute. On the other hand, the B-10 concentration in tumors was increased from 90 min and maximal at 150 min after application, thus confirming the in vitro results. Therefore, the present in vitro and in vivo study of B-10 uptake in normal and tumor cells revealed important data that could enable BNCT to be possibly used as a treatment for melanoma, a chemoresistant cancer associated with high mortality.
Resumo:
A number of indoor environmental factors, including bioaerosol or aeroallergen concentrations have been identified as exacerbators for asthma and allergenic conditions of the respiratory system. People generally spend 90% to 95% of their time indoors. Therefore, understanding the environmental factors that affect the presence of aeroallergens indoors as well as outdoors is important in determining their health impact, and in identifying potential intervention methods. This study aimed to assess the relationship between indoor airborne fungal spore concentrations and indoor surface mold levels, indoor versus outdoor airborne fungal spore concentrations and the effect of previous as well as current water intrusion. Also, the association between airborne concentration of indoor fungal spores and surface mold levels and the age of the housing structure were examined. Further, the correlation between indoor concentrations of certain species was determined as well. ^ Air and surface fungal measurements and related information were obtained from a Houston-area data set compiled from visits to homes filing insurance claims. During the sampling visit these complaint homes exhibited either visible mold or a combination of visible mold and water intrusion problems. These data were examined to assess the relationships between the independent and dependent variables using simple linear regression analysis, and independent t-tests. To examine the correlation between indoor concentrations of certain species, Spearman correlation coefficients were used. ^ There were 126 houses sampled, with spring, n=43 (34.1%), and winter, n=42 (33.3%), representing the seasons with the most samples. The summer sample illustrated the highest geometric mean concentration of fungal spores, GM=5,816.5 relative to winter, fall and spring (GM=1,743.4, GM=3,683.5 and GM=2,507.4, respectively). In all seasons, greater concentrations of fungal spores were observed during the cloudy weather conditions. ^ The results indicated no statistically significant association between outdoor total airborne fungal spore concentration and total living room airborne fungal spore concentration (β = 0.095, p = 0.491). Second, living room surface mold levels were not associated with living room airborne fungal spore concentration, (β= 0.011, p = 0.669). Third, houses with and without previous water intrusion did not differ significantly with respect to either living room (t(111) = 0.710, p = 0.528) or bedroom (t(111) =1.673, p = 0.162) airborne fungal spore concentrations. Likewise houses with and without current water intrusion did not differ significantly with respect to living room (t(109)=0.716, p = 0.476) or bedroom (t(109) = 1.035, p = 0.304) airborne fungal spore concentration. Fourth, houses with and without current water intrusion did not differ significantly with respect to living room (χ 2 (5) = 5.61, p = 0.346), or bedroom (χ 2 (5) = 1.80, p = 0.875) surface mold levels. Fifth, the age of the house structure did not predict living room (β = 0.023, p = 0.102) and bedroom (β = 0.023, p = 0.065) surface mold levels nor living room (β = 0.002, p = 0.131) and bedroom (β = 0.001, p = 0.650) fungal spore airborne concentration. Sixth, in houses with visually observed mold growth there was statistically significant differences between the mean living room concentrations and mean outdoor concentrations for Cladosporium (t (107) = 11.73, p < 0.0001), Stachybotrys (t (106)=2.288, p = 0.024, and Nigrosporia (t (102) = 2.267, p = 0.025). Finally, there was a significant correlation between several living room fungal species pairs, namely, Cladosporium and Stachybotrys (r = 0.373, p <0.01, n=65), Curvularia and Aspergillus/Penicillium (r = 0.205, p < 0.05, n= 111)), Curvularia and Stachybotrys (r = 0.205, p < 0.05, n=111), Nigrospora and Chaetomium (r = 0.254, p < 0.01, n=105) and Stachybotrys and Nigrospora (r = 0.269, p < 0.01, n=105). ^ This study has demonstrated several positive findings, i.e., significant pairwise correlations of concentrations of several fungal species in living room air, and significant differences between indoor and outdoor concentrations of three fungal species in homes with visible mold. No association was observed between indoor and outdoor fungal spore concentrations. Neither living room nor bedroom airborne spore concentrations and surface mold levels were related to the age of the house or to water intrusion, either previous or current. Therefore, these findings suggest the need for evaluating additional parameters, as well as combinations of factors such as humidity, temperature, age of structure, ventilation, and room size to better understand the determinants of airborne fungal spore concentrations and surface mold levels in homes. ^
Resumo:
Understanding the origins, transport and fate of contamination is essential to effective management of water resources and public health. Individuals and organizations with management responsibilities need to understand the risks to ecosystems and to humans from contact with contamination. Managers also need to understand how key contaminants vary over time and space in order to design and prioritize mitigation strategies. Tumacacori National Historic Park (NHP) is responsible for management of its water resources for the benefit of the park and for the health of its visitors. The existence of microbial contaminants in the park poses risks that must be considered in park planning and operations. The water quality laboratory at the Maricopa Agricultural Center (in collaboration with stakeholder groups and individuals located in the ADEQ-targeted watersheds) identified biological changes in surface water quality in impaired reaches rivers to determine the sources of Escherichia coli (E. coli); bacteria utilizing innovative water quality microbial/bacterial source tracking methods. The end goal was to support targeted watershed groups and ADEQ towards E. coli reductions. In the field monitoring was conducted by the selected targeted watershed groups in conjunction with The University of Arizona Maricopa Agricultural Center Water Quality Laboratory. This consisted of collecting samples for Bacteroides testing from multiple locations on select impaired reaches, to determine contamination resulting from cattle, human recreation, and other contributions. Such testing was performed in conjunction with high flow and base flow conditions in order to accurately portray water quality conditions and variations. Microbial monitoring was conducted by The University of Arizona Water Quality Laboratory at the Maricopa Agricultural Center using genetic typing to differentiate among two categories of Bacteroides: human and all (total). Testing used microbial detection methodologies and molecular source tracking techniques.^