1000 resultados para Biological oceanography


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Summer bloom-derived phytodetritus settles rapidly to the seafloor on the West Antarctic Peninsula (WAP) continental shelf, where it appears to degrade relatively slowly, forming a sediment ""food bank"" for benthic detritivores. We used stable carbon and nitrogen isotopes to examine sources and sinks of particulate organic material (POM) reaching the WAP shelf benthos (550-625 m depths), and to explore trophic linkages among the most abundant benthic megafauna. We measured delta(13)C and delta(15)N values in major megafaunal taxa (n = 26) and potential food sources, including suspended and sinking POM, ice algae, sediment organic carbon, phytodetritus, and macrofaunal polychaetes. The range in delta(13)C values (> 14 parts per thousand) of suspended POM was considerably broader than in sedimentary POC, where little temporal variability in stable isotope signatures was observed. While benthic megafauna also exhibited a broad range of VC values, organic carbon entering the benthic food web appeared to be derived primarily from phytoplankton production, with little input from ice algae. One group of organisms, primarily deposit-feeders, appeared to rely on fresh phytodetritus recovered from the sediments, and sediment organic material that had been reworked by sediment microbes. A second group of animals, including many mobile invertebrate and fish predators, appeared to utilize epibenthic or pelagic food resources such as zooplankton. One surface-deposit-feeding holothurian (Protelpidia murrayi) exhibited seasonal variability in stable isotope values of body tissue, while other surface- and subsurface-deposit-feeders showed no evidence of seasonal variability in food source or trophic position. Detritus from phytoplankton blooms appears to be the primary source of organic material for the detritivorous benthos; however, seasonal variability in the supply of this material is not mirrored in the sediments, and only to a minor degree in the benthic fauna. This pattern suggests substantial inertia in benthic-pelagic coupling, whereby the sediment ecosystem integrates long-term variability in production processes in the water column above. Published by Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deep-sea whale falls create sulfidic habits Supporting chemoautotrophic communities, but microbial processes underlying the formation Of Such habitats remain poorly evaluated. Microbial degradation processes (sulfate reduction, methanogenesis) and biogeochemical gradients were studied in a whale-fall habitat created by a 30 t whale carcass deployed at 1675 m depth for 6 to 7 yr on the California margin. A variety of measurements were conducted including photomosaicking, microsensor measurements, radio-tracer incubations and geochemical analyses. Sediments were Studied at different distances (0 to 9 in) from the whale fall. Highest microbial activities and steepest vertical geochemical gradients were found within 0.5 m of the whale fall, revealing ex situ sulfate reduction and in vitro methanogenesis rates of up to 717 and 99 mmol m(-2) d(-1), respectively. In sediments containing whale biomass, methanogenesis was equivalent to 20 to 30%, of sulfate reduction. During in vitro sediment studies, sulfide and methane were produced within days to weeks after addition of whale biomass, indicating that chemosynthesis is promoted at early stages of the whale fall. Total sulfide production from sediments within 0.5 m of the whale fall was 2.1 +/- 3 and 1.5 +/- 2.1 mol d(-1) in Years 6 and 7, respectively, of which similar to 200 mmol d(-1) were available as free sulfide. Sulfate reduction in bones was much lower, accounting for a total availability of similar to 10 mmol sulfide d(-1). Over periods of at least 7 yr, whale falls can create sulfidic conditions similar to other chemosynthetic habitats Such as cold seeps and hydrothermal vents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabajo realizado por: Maldonado, F.; Packard, T.; Gómez, M.; Santana Rodríguez, J. J

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabajo realizado por: Packard, T. T., Osma, N., Fernández Urruzola, I., Gómez, M

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabajo realizado por: Garijo, J. C., Hernández León, S.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

trabajo realizado por Medina Alcaraz, C., Castro, J.J., Sosa, P. A.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[EN] Forested Tamarix L. species found in the Canary Islands as in the Western Mediterranean Basin and the Saharo-Arabian area are included in the class Nerio-Tamaricetea within the order Tamaricetalia africanae order recognized by the Canaries that does not include Tamarix africana Poir., and the halophilic and halotolerant their communities are included in the alliance Tamaricion boveano-canariensis with the new partnership Atriplici ifniensis Tamaricetum canariensis endemic to the Canary Islands, which is also poor in the characteristic species of the class and to be defined almost exclusively for Tenerife requires a broader review.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabajo realizado por Ariza, A. V., Kaartvedt, S. Rostad, A. Garijo, J. C., Arístegui, J. Fraile-Nuez, E., Hernández-León, S.