939 resultados para Biological Markers -- metabolism
Resumo:
BACKGROUND Burns and their associated wound care procedures evoke significant stress and anxiety, particularly for children. Little is known about the body's physiological stress reactions throughout the stages of re-epithelialization following an acute burn injury. Previously, serum and urinary cortisol have been used to measure stress in burn patients, however these measures are not suitable for a pediatric burn outpatient setting. AIM To assess the sensitivity of salivary cortisol and sAA in detecting stress during acute burn wound care procedures and to investigate the body's physiological stress reactions throughout burn re-epithelialization. METHODS Seventy-seven participants aged four to thirteen years who presented with an acute burn injury to the burn center at the Royal Children's Hospital, Brisbane, Australia, were recruited between August 2011 and August 2012. RESULTS Both biomarkers were responsive to the stress of burn wound care procedures. sAA levels were on average 50.2U/ml higher (p<0.001) at 10min post-dressing removal compared to baseline levels. Salivary cortisol levels showed a blunted effect with average levels at ten minutes post dressing removal decreasing by 0.54nmol/L (p<0.001) compared to baseline levels. sAA levels were associated with pain (p=0.021), no medication (p=0.047) and Child Trauma Screening Questionnaire scores at three months post re-epithelialization (p=0.008). Similarly, salivary cortisol was associated with no medication (p<0.001), pain scores (p=0.045) and total body surface area of the burn (p=0.010). CONCLUSION Factors which support the use of sAA over salivary cortisol to assess stress during morning acute burn wound care procedures include; sensitivity, morning clinic times relative to cortisol's diurnal peaks, and relative cost.
Resumo:
AIM: Fourteen urinary nucleosides, primary degradation products of tRNA, were evaluated to know the potential as biological markers for patients with colorectal cancer.
Autolytic Mycobacterium leprae Hsp65 fragments may act as biological markers for autoimmune diseases
Resumo:
Investigating the proteolytic activity of the recombinant Mycobacterium leprae Heat Shock Protein of 65 kDa (rHsp65), chaperonin 2 (cpn2), we observed that it displays high instability. The fragmentation process starts at the C-terminus followed by progressive degradation of the N-terminus, which leads to a stable fragment comprising the middle region of the molecule. Urea was able to prevent autolysis, probably due to its denaturing action, while EDTA increased degradation levels indicating the need for metal ions. Peptides originated from autolysis were purified and analyzed by mass spectrometry, generating a continuous map. Since the bacteria and mammalian Hsp60 are known to be targets of the immune response and have been implicated in autoimmune diseases and chronic inflammation, the in vivo effect of rHsp65 peptides was evaluated in the spontaneous Systemic Lupus Erythematosus (SLE) model developed by the (NZB/NZW)F(1) mouse hybrids, and their individual anti-rHsp65 IgG2a/IgG1 antibody titer ratio was determined. The results showed orientation toward a T(H)1 responsiveness, and the treatment with the rHsp65 peptides diminished the environmental variance of the survival time of treated animals. These results outline the fact that environmental factors may also act through the modified stability expression of Heat Shock Proteins intervening during autoimmune processes. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Recent and historical biomarkers assess chronic or subchronic exposure to fluoride. The most studied recent biomarkers are nails and hair. Both can be non-invasively obtained, although collection of nails is more accepted by the subjects. External contamination may be a problem for both biomarkers and still needs to be better evaluated. Nails have been more extensively studied. Although the available knowledge does not allow their use as predictors of dental fluorosis by individual subjects, since reference values of fluoride have not yet been established, they have a strong potential for use in epidemiological surveys. Toenails should be preferred instead of fingernails, and variables that are known to affect nail fluoride concentrations - such as age, gender and geographical area - should be considered. The main historical biomarkers that could indicate total fluoride body burden are bone and dentin. Of these, bone is more studied, but its fluoride concentrations vary according to the type of bone and subjects' age and gender. They are also influenced by genetic background, renal function and remodeling rate, variables that complicate the establishment of a normal range of fluoride levels in bone that could indicate 'desirable' exposure to fluoride. The main issue when attempting to use bone as biomarker of fluoride exposure is the difficulty and invasiveness of sample collection. In this aspect, collection of dentin, especially from 3rd molars that are commonly extracted, is advantageous. However, mean values also span a wide range and reference concentrations have not been published yet. © 2011 S. Karger AG, Basel.
Resumo:
To present a critical review of publications reporting on the rationale and clinical implications of the use of biomarkers for the early diagnosis of Alzheimer's disease (AD). Methods: We conducted a systematic search of the PubMed and Web of Science electronic databases, limited to articles published in English between 1999 and 2012, and based on the following terms: mild cognitive impairment, Alzheimer's disease OR dementia, biomarkers. We retrieved 1,130 articles, of which 175 were reviews. Overall, 955 original articles were eligible. Results: The following points were considered relevant for the present review: a) rationale for biomarkers research in AD and mild cognitive impairment (MCI); b) usefulness of distinct biomarkers for the diagnosis and prediction of AD; c) the role of multimodality biomarkers for the diagnosis and prediction of AD; d) the role of biomarkers in clinical trials of patients with AD and MCI; and e) current limitations to the widespread use of biomarkers in research and clinical settings. Conclusion: Different biomarkers are useful for the early diagnosis and prediction of AD in at-risk subjects. Nonetheless, important methodological limitations need to be overcome for widespread use of biomarkers in research and clinical settings. © 2013 Associação Brasileira de Psiquiatria.
Resumo:
The objective of this research was to verify the relationship between biological markers of performance of elite judo athletes and performance in different physical fitness tests. Twenty-one judo athletes were involved in the present observational and correlational study. Dermatoglyphic variables and the 2D:4D digit ratio were considered as biological markers, while the physical fitness variables analyzed were body fat, maximal strength, muscular power, the aerobic and anaerobic profile, and performance in specific tests. The statistics involved canonical correlations and a multivariate technique. A high and significant canonical correlation was observed between groups of variables, the first expressed by 1=0.999 (p<0.0001) and the second by 2=0.997 (p<0.001). It appears that, beyond height and body mass, total ridge count, pattern intensity for fingers and 2D:4D had more canonical loading. The physical fitness component of the first canonical variable incorporated, with high intensity were: the sum of skinfold thickness, the bench press onerepetition maximum (1RM), upper and lower body aerobic power. In the second canonical variable, physical fitness was composed of the squat 1RM, suspension time on the bar, the SJFT-index, and mean power during the upper body Wingate test. The data of this investigation showed the interdependence between biological markers of performance and physical fitness in high level judo athletes.
Resumo:
INTRODUCTION: The incidence of bloodstream infection (BSI) in extracorporeal life support (ECLS) is reported between 0.9 and 19.5%. In January 2006, the Extracorporeal Life Support Organization (ELSO) reported an overall incidence of 8.78% distributed as follows: respiratory: 6.5% (neonatal), 20.8% (pediatric); cardiac: 8.2% (neonatal) and 12.6% (pediatric). METHOD: At BC Children's Hospital (BCCH) daily surveillance blood cultures (BC) are performed and antibiotic prophylaxis is not routinely recommended. Positive BC (BC+) were reviewed, including resistance profiles, collection time of BC+, time to positivity and mortality. White blood cell count, absolute neutrophile count, immature/total ratio, platelet count, fibrinogen and lactate were analyzed 48, 24 and 0 h prior to BSI. A univariate linear regression analysis was performed. RESULTS: From 1999 to 2005, 89 patients underwent ECLS. After exclusion, 84 patients were reviewed. The attack rate was 22.6% (19 BSI) and 13.1% after exclusion of coagulase-negative staphylococci (n = 8). BSI patients were significantly longer on ECLS (157 h) compared to the no-BSI group (127 h, 95% CI: 106-148). Six BSI patients died on ECLS (35%; 4 congenital diaphragmatic hernias, 1 hypoplastic left heart syndrome and 1 after a tetralogy repair). BCCH survival on ECLS was 71 and 58% at discharge, which is comparable to previous reports. No patient died primarily because of BSI. No BSI predictor was identified, although lactate may show a decreasing trend before BSI (P = 0.102). CONCLUSION: Compared with ELSO, the studied BSI incidence was higher with a comparable mortality. We speculate that our BSI rate is explained by underreporting of "contaminants" in the literature, the use of broad-spectrum antibiotic prophylaxis and a higher yield with daily monitoring BC. We support daily surveillance blood cultures as an alternative to antibiotic prophylaxis in the management of patients on ECLS.
Resumo:
In addition to self reports and questionnaires, biomarkers are of relevance in the diagnosis of and therapy for alcohol use disorders. Traditional biomarkers such as gamma-glutamyl transpeptidase or mean corpuscular volume are indirect biomarkers and are subject to the influence of age, gender and non-alcohol related diseases, among others. Direct metabolites of ethanol such as Ethyl glucuronide (EtG), ethyl sulphate (EtS) and phosphatidylethanol (PEth) are direct metabolites of ethanol, that are positive after intake of ethyl alcohol. They represent useful diagnostic tools for identifying alcohol use even more accurately than traditional biomarkers. Each of these drinking indicators remains positive in serum and urine for a characteristic time spectrum after the cessation of ethanol intake - EtG and EtS in urine up to 7 days, EtG in hair for months after ethanol has left the body. Applications include clinical routine use, emergency room settings, proof of abstinence in alcohol rehabilitation programmes, driving under influence offenders, workplace testing, assessment of alcohol intake in the context of liver transplantation and foetal alcohol syndrome. Due to their properties, they open up new perspectives for prevention, interdisciplinary cooperation, diagnosis of and therapy for alcohol-related problems.
Resumo:
Alcohol and tobacco related disorders are the two leading and most expensive causes of illness in central Europe. In addition to self reports and questionnaires, biomarkers are of relevance in diagnosis and therapy of alcohol use disorders.Traditional biomarkers such as gamma glutamyl transpeptidase or mean corpuscualr volume are indirect biomarkers and are subject to influence of age, gender and non alcohol related diseases, among others.Direct ethanol metabolites such as ethyl glucuronide (EtG), ethyl sulphate (EtS) and phosphatidylethanol (PEth) are direct metabolites of ethanol, that are positive after intake of ethyl alcohol. They represent useful diagnostic tools for identifying alcohol use even more accurately than traditional biomarkers. Each of these drinking indicators remains positive in serum and urine for a characteristic time spectrum after the cessation of ethanol intake-EtG and EtS in urine up to 7 days, EtG in hair for months after ethanol has left the body. Applications include clinical routine use, emergency room settings, proof of abstinence in alcohol rehabilitation programs, driving under influence offenders, workplace testing, assessment of alcohol intake in the context of liver transplantation and fetal alcohol syndrome.
Resumo:
As the physiological impact of chronic stress is difficult to study in humans, naturalistic stressors are invaluable sources of information in this area. This review systematically evaluates the research literature examining biomarkers of chronic stress, including neurocognition, in informal dementia caregivers. We identified 151 papers for inclusion in the final review, including papers examining differences between caregivers and controls as well as interventions aimed at counteracting the biological burden of chronic caregiving stress. Results indicate that cortisol was increased in caregivers in a majority of studies examining this biomarker. There was mixed evidence for differences in epinephrine, norepinephrine and other cardiovascular markers. There was a high level of heterogeneity in immune system measures. Caregivers performed more poorly on attention and executive functioning tests. There was mixed evidence for memory performance. Interventions to reduce stress improved cognition but had mixed effects on cortisol. Risk of bias was generally low to moderate. Given the rising need for family caregivers worldwide, the implications of these findings can no longer be neglected.
Resumo:
Regenerative medicine-based approaches for the repair of damaged cartilage rely on the ability to propagate cells while promoting their chondrogenic potential. Thus, conditions for cell expansion should be optimized through careful environmental control. Appropriate oxygen tension and cell expansion substrates and controllable bioreactor systems are probably critical for expansion and subsequent tissue formation during chondrogenic differentiation. We therefore evaluated the effects of oxygen and microcarrier culture on the expansion and subsequent differentiation of human osteoarthritic chondrocytes. Freshly isolated chondrocytes were expanded on tissue culture plastic or CultiSpher-G microcarriers under hypoxic or normoxic conditions (5% or 20% oxygen partial pressure, respectively) followed by cell phenotype analysis with flow cytometry. Cells were redifferentiated in micromass pellet cultures over 4 weeks, under either hypoxia or normoxia. Chondrocytes cultured on tissue culture plastic proliferated faster, expressed higher levels of cell surface markers CD44 and CD105 and demonstrated stronger staining for proteoglycans and collagen type II in pellet cultures compared with microcarrier-cultivated cells. Pellet wet weight, glycosaminoglycan content and expression of chondrogenic genes were significantly increased in cells differentiated under hypoxia. Hypoxia-inducible factor-3alpha mRNA was up-regulated in these cultures in response to low oxygen tension. These data confirm the beneficial influence of reduced oxygen on ex vivo chondrogenesis. However, hypoxia during cell expansion and microcarrier bioreactor culture does not enhance intrinsic chondrogenic potential. Further improvements in cell culture conditions are therefore required before chondrocytes from osteoarthritic and aged patients can become a useful cell source for cartilage regeneration.
Resumo:
The mechanisms involved in the control of embryonic stem (ES) cell differentiation are yet to be fully elucidated. However, it has become clear that the family of fibroblast growth factors (FGFs) are centrally involved. In this study we examined the role of the FGF receptors (FGFRs 1-4) during osteogenesis in murine ES cells. Single cells were obtained after the formation of embryoid bodies, cultured on gelatin-coated plates, and coaxed to differentiate along the osteogenic lineage. Upregulation of genes was analyzed at both the transcript and protein levels using gene array, relative-quantitative PCR (RQ-PCR), and Western blotting. Deposition of a mineralized matrix was evaluated with Alizarin Red staining. An FGFR1-specific antibody was generated and used to block FGFR1 activity in mES cells during osteogenic differentiation. Upon induction of osteogenic differentiation in mES cells, all four FGFRs were clearly upregulated at both the transcript and protein levels with a number of genes known to be involved in osteogenic differentiation including bone morphogenetic proteins (BMPs), collagen I, and Runx2. Cells were also capable of depositing a mineralized matrix, confirming the commitment of these cells to the osteogenic lineage. When FGFR1 activity was blocked, a reduction in cell proliferation and a coincident upregulation of Runx2 with enhanced mineralization of cultures was observed. These results indicate that FGFRs play critical roles in cell recruitment and differentiation during the process of osteogenesis in mES cells. In particular, the data indicate that FGFR1 plays a pivotal role in osteoblast lineage determination.
Resumo:
Comment