893 resultados para Biologia computacional


Relevância:

60.00% 60.00%

Publicador:

Resumo:

O projecto de sequenciação do genoma humano veio abrir caminho para o surgimento de novas áreas transdisciplinares de investigação, como a biologia computacional, a bioinformática e a bioestatística. Um dos resultados emergentes desde advento foi a tecnologia de DNA microarrays, que permite o estudo do perfil da expressão de milhares de genes, quando sujeitos a perturbações externas. Apesar de ser uma tecnologia relativamente consolidada, continua a apresentar um conjunto vasto de desafios, nomeadamente do ponto de vista computacional e dos sistemas de informação. São exemplos a optimização dos procedimentos de tratamento de dados bem como o desenvolvimento de metodologias de interpretação semi-automática dos resultados. O principal objectivo deste trabalho consistiu em explorar novas soluções técnicas para agilizar os procedimentos de armazenamento, partilha e análise de dados de experiências de microarrays. Com esta finalidade, realizou-se uma análise de requisitos associados às principais etapas da execução de uma experiência, tendo sido identificados os principais défices, propostas estratégias de melhoramento e apresentadas novas soluções. Ao nível da gestão de dados laboratoriais, é proposto um LIMS (Laboratory Information Management System) que possibilita a gestão de todos os dados gerados e dos procedimentos realizados. Este sistema integra ainda uma solução que permite a partilha de experiências, de forma a promover a participação colaborativa de vários investigadores num mesmo projecto, mesmo usando LIMS distintos. No contexto da análise de dados, é apresentado um modelo que facilita a integração de algoritmos de processamento e de análise de experiências no sistema desenvolvido. Por fim, é proposta uma solução para facilitar a interpretação biológica de um conjunto de genes diferencialmente expressos, através de ferramentas que integram informação existente em diversas bases de dados biomédicas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O desenvolvimento de equipamentos de descodificação massiva de genomas veio aumentar de uma forma brutal os dados disponíveis. No entanto, para desvendarmos informação relevante a partir da análise desses dados é necessário software cada vez mais específico, orientado para determinadas tarefas que auxiliem o investigador a obter conclusões o mais rápido possível. É nesse campo que a bioinformática surge, como aliado fundamental da biologia, uma vez que tira partido de métodos e infra-estruturas computacionais para desenvolver algoritmos e aplicações informáticas. Por outro lado, na maior parte das vezes, face a novas questões biológicas é necessário responder com novas soluções específicas, pelo que o desenvolvimento de aplicações se torna um desafio permanente para os engenheiros de software. Foi nesse contexto que surgiram os principais objectivos deste trabalho, centrados na análise de tripletos e de repetições em estruturas primárias de DNA. Para esse efeito, foram propostos novos métodos e novos algoritmos que permitirem o processamento e a obtenção de resultados sobre grandes volumes de dados. Ao nível da análise de tripletos de codões e de aminoácidos foi proposto um sistema concebido para duas vertentes: por um lado o processamento dos dados, por outro a disponibilização na Web dos dados processados, através de um mecanismo visual de composição de consultas. Relativamente à análise de repetições, foi proposto e desenvolvido um sistema para identificar padrões de nucleótidos e aminoácidos repetidos em sequências específicas, com particular aplicação em genes ortólogos. As soluções propostas foram posteriormente validadas através de casos de estudo que atestam a mais-valia do trabalho desenvolvido.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese de mestrado em Bioinformática e Biologia Computacional (Bioinformática), apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2014

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Historicamente, o processo de formação das populações da Amazônia, assim como de todo território brasileiro, envolveu três grupos étnicos principais: o ameríndio, o europeu e o africano. Como conseqüência, estas populações possuem em geral constituição miscigenada do ponto de vista social e biológico. Desde o final do século passado, estudos do DNA mitocondrial (mtDNA) tem sido desenvolvidos com o propósito de estimar a mistura interétnica presente nestas populações. Para isto, é de fundamental importância a classificação de uma determinada linhagem de mtDNA em um dos mais de 250 haplogrupos/subclados propostos na literatura. Com o objetivo de desenvolver um sistema automatizado, preciso e acurado de classificação de seqüências (linhagens) de mtDNA, o presente trabalhou lançou mão da técnica de Redes Neurais Artificiais (RNA’s) tendo como base os estudos de filogeografia. Para esta classificação, foram desenvolvidas quatro redes neurais artificiais diretas, com múltiplas camadas e algoritmo de aprendizagem de retropropagação. As entradas de cada rede equivalem às posições nucleotídicas polimórficas da região hipervariável do DNA mitocondrial, as quais retornam como saída a classificação específica de cada linhagem. Posterior ao treinamento, todas as redes apresentaram índices de acerto de 100%, demonstrando que a técnica de Rede Neural Artificial pode ser utilizada, com êxito, na classificação de padrões filogeográficos com base no DNA mitocondrial.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciência da Computação - IBILCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Biologia Computacional tem desenvolvido algoritmos aplicados a problemas relevantes da Biologia. Um desses problemas é a Protein Structure Prediction (PSP). Vários métodos têm sido desenvolvidos na literatura para lidar com esse problema. Porém a reprodução de resultados e a comparação dos mesmos não têm sido uma tarefa fácil. Nesse sentido, o Critical Assessment of protein Structure Prediction (CASP), busca entre seus objetivos, realizar tais comparações. Além disso, os sistemas desenvolvidos para esse problema em geral não possuem interface amigável, não favorecendo o uso por não especialistas da computação. Buscando reduzir essas dificuldades, este trabalho propões o Koala, um sistema baseado em uma plataforma web, que integra vários métodos de predição e análises de estruturas de proteínas, possibilitando a execução de experimentos complexos com o uso de fluxos de trabalhos. Os métodos de predição disponíveis podem ser integrados para a realização de análises dos resultados, usando as métricas RMSD, GDT-TS ou TM-Score. Além disso, o método Sort by front dominance (baseado no critério de optimalidade de Pareto), proposto nesse trabalho, consegue avaliar predições sem uma estrutura de referência. Os resultados obtidos, usando proteínas alvo de artigos recentes e do CASP11, indicam que o Koala tem capacidade de realizar um conjunto relativamente grande de experimentos estruturados, beneficiando a determinação de melhores estruturas de proteínas, bem como o desenvolvimento de novas abordagens para predição e análise por meio de fluxos de trabalho.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese de mestrado, Bioinformática e Biologia Computacional (Bioinformática), Universidade de Lisboa, Faculdade de Ciências, 2016

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Um dos maiores avanços científicos do século XX foi o desenvolvimento de tecnologia que permite a sequenciação de genomas em larga escala. Contudo, a informação produzida pela sequenciação não explica por si só a sua estrutura primária, evolução e seu funcionamento. Para esse fim novas áreas como a biologia molecular, a genética e a bioinformática são usadas para estudar as diversas propriedades e funcionamento dos genomas. Com este trabalho estamos particularmente interessados em perceber detalhadamente a descodificação do genoma efectuada no ribossoma e extrair as regras gerais através da análise da estrutura primária do genoma, nomeadamente o contexto de codões e a distribuição dos codões. Estas regras estão pouco estudadas e entendidas, não se sabendo se poderão ser obtidas através de estatística e ferramentas bioinfomáticas. Os métodos tradicionais para estudar a distribuição dos codões no genoma e seu contexto não providenciam as ferramentas necessárias para estudar estas propriedades à escala genómica. As tabelas de contagens com as distribuições de codões, assim como métricas absolutas, estão actualmente disponíveis em bases de dados. Diversas aplicações para caracterizar as sequências genéticas estão também disponíveis. No entanto, outros tipos de abordagens a nível estatístico e outros métodos de visualização de informação estavam claramente em falta. No presente trabalho foram desenvolvidos métodos matemáticos e computacionais para a análise do contexto de codões e também para identificar zonas onde as repetições de codões ocorrem. Novas formas de visualização de informação foram também desenvolvidas para permitir a interpretação da informação obtida. As ferramentas estatísticas inseridas no modelo, como o clustering, análise residual, índices de adaptação dos codões revelaram-se importantes para caracterizar as sequências codificantes de alguns genomas. O objectivo final é que a informação obtida permita identificar as regras gerais que governam o contexto de codões em qualquer genoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Knowledge of the native prokaryotes in hazardous locations favors the application of biotechnology for bioremediation. Independent strategies for cultivation and metagenomics contribute to further microbiological knowledge, enabling studies with non-cultivable about the "native microbiological status and its potential role in bioremediation, for example, of polycyclic aromatic hydrocarbons (HPA's). Considering the biome mangrove interface fragile and critical bordering the ocean, this study characterizes the native microbiota mangrove potential biodegradability of HPA's using a biomarker for molecular detection and assessment of bacterial diversity by PCR in areas under the influence of oil companies in the Basin Petroleum Geology Potiguar (BPP). We chose PcaF, a metabolic enzyme, to be the molecular biomarker in a PCR-DGGE detection of prokaryotes that degrade HPA s. The PCR-DGGE fingerprints obtained from Paracuru-CE, Fortim-CE and Areia Branca-RN samples revealed the occurrence of fluctuations of microbial communities according to the sampling periods and in response to the impact of oil. In the analysis of microbial communities interference of the oil industry, in Areia Branca-RN and Paracuru-CE was observed that oil is a determinant of microbial diversity. Fortim-CE probably has no direct influence with the oil activity. In order to obtain data for better understanding the transport and biodegradation of HPA's, there were conducted in silico studies with modeling and simulation from obtaining 3-D models of proteins involved in the degradation of phenanthrene in the transport of HPA's and also getting the 3-D model of the enzyme PcaF used as molecular marker in this study. Were realized docking studies with substrates and products to a better understanding about the transport mechanism and catalysis of HPA s

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Biofísica Molecular - IBILCE

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Biofísica Molecular - IBILCE

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Educação para a Ciência - FC