971 resultados para Biofilms and pathogenesis
Resumo:
BACKGROUND: It has been hypothesized that bacterial biofilms on breast implants may cause chronic inflammation leading to capsular contracture. The association between bacterial biofilms of removed implants and capsular contracture was investigated. METHODS: Breast implants explanted between 2006 and 2010 at five participating centres for plastic and reconstructive surgery were investigated by sonication. Bacterial cultures derived from sonication were correlated with patient, surgical and implant characteristics, and the degree of capsular contracture. RESULTS: The study included 121 breast implants from 84 patients, of which 119 originated from women and two from men undergoing gender reassignment. Some 50 breast prostheses were implanted for reconstruction, 48 for aesthetic reasons and 23 implants were used as temporary expander devices. The median indwelling time was 4·0 (range 0·1-32) years for permanent implants and 3 (range 1-6) months for temporary devices. Excluding nine implants with clinical signs of infection, sonication cultures were positive in 40 (45 per cent) of 89 permanent implants and in 12 (52 per cent) of 23 temporary devices. Analysis of permanent implants showed that a positive bacterial culture after sonication correlated with the degree of capsular contracture: Baker I, two of 11 implants; Baker II, two of ten; Baker III, nine of 23; and Baker IV, 27 of 45 (P < 0·001). The most frequent organisms were Propionibacterium acnes (25 implants) and coagulase-negative staphylococci (21). CONCLUSION: Sonication cultures correlated with the degree of capsular contracture, indicating the potential causative role of bacterial biofilms in the pathogenesis of capsular contracture. Registration number: NCT01138891 (http://www.clinicaltrials.gov).
Resumo:
Oropouche virus (OROV) is a member of the Orthobunyavirus genus in the Bunyaviridae family and a prominent cause of insect-transmitted viral disease in Central and South America. Despite its clinical relevance, little is known about OROV pathogenesis. To define the host defense pathways that control OROV infection and disease, we evaluated OROV pathogenesis and immune responses in primary cells and mice that were deficient in the RIG-I-like receptor signaling pathway (MDA5, RIG-I, or MAVS), downstream regulatory transcription factors (IRF-3 or IRF-7), IFN-β, or the receptor for type I IFN signaling (IFNAR). OROV replicated to higher levels in primary fibroblasts and dendritic cells lacking MAVS signaling, the transcription factors IRF-3 and IRF-7, or IFNAR. In mice, deletion of IFNAR, MAVS, or IRF-3 and IRF-7 resulted in uncontrolled OROV replication, hypercytokinemia, extensive liver damage, and death whereas wild-type (WT) congenic animals failed to develop disease. Unexpectedly, mice with a selective deletion of IFNAR on myeloid cells (CD11c Cre(+) Ifnar(f/f) or LysM Cre(+) Ifnar(f/f)) did not sustain enhanced disease with OROV or La Crosse virus, a closely related encephalitic orthobunyavirus. In bone marrow chimera studies, recipient irradiated Ifnar(-/-) mice reconstituted with WT hematopoietic cells sustained high levels of OROV replication and liver damage, whereas WT mice reconstituted with Ifnar(-/-) bone marrow were resistant to disease. Collectively, these results establish a dominant protective role for MAVS, IRF-3 and IRF-7, and IFNAR in restricting OROV virus infection and tissue injury, and suggest that IFN signaling in non-myeloid cells contributes to the host defense against orthobunyaviruses. Oropouche virus (OROV) is an emerging arthropod-transmitted orthobunyavirus that causes episodic outbreaks of a debilitating febrile illness in humans in countries of South and Central America. The continued expansion of the range and number of its arthropod vectors increases the likelihood that OROV will spread into new regions. At present, the pathogenesis of OROV in humans or other vertebrate animals remains poorly understood. To define cellular mechanisms of control of OROV infection, we performed infection studies in a series of primary cells and mice that were deficient in key innate immune genes involved in pathogen recognition and control. Our results establish that a MAVS-dependent type I IFN signaling pathway has a dominant role in restricting OROV infection and pathogenesis in vivo.
Resumo:
Wolbachia pipientis is a vertically transmitted, obligate intracellular symbiont of arthropods. The bacterium is best known for its ability to manipulate host reproductive biology where it can induce cytoplasmic incompatibility, parthenogenesis, feminization and male-killing. In addition to the various reproductive phenotypes it generates through interaction with host reproductive tissue it is also known to infect somatic tissues. However, relatively little is known about the consequences of infection of these tissues with the exception that in some hosts Wolbachia acts as a classical mutualist and in others a pathogen, dramatically shortening adult insect lifespan. Manipulation experiments have demonstrated that the severity of Wolbachia-induced effects on the host is determined by a combination of host genotype, Wolbachia strain, host tissue localization, and interaction with the environment. The recent completion of the whole genome sequence of Wolbachia pipientis wMel strain indicates that it is likely to use a type IV secretion system to establish and maintain infection in its host. Moreover, an unusual abundance of genes encoding proteins with eukaryotic-like ankyrin repeat domains suggest a function in the various described phenotypic effects in hosts.
Resumo:
Arenaviruses are enveloped negative single strand RNA viruses that include a number of important human pathogens. The most prevalent human pathogen among the arenaviruses is the Old World arenavirus Lassa virus (LASV) which is endemic in West Africa from Senegal to Cameroon. LASV is the etiologic agent of a severe viral hemorrhagic fever named Lassa fever whose mortality rate can reach 30% in hospitalized patients. One of the hallmarks of fatal arenavirus infection in humans is the absence of an effective innate and adaptive immune response. In nature, arenaviruses are carried by rodents which represent the natural reservoirs as well as the vectors for transmission. In their natural rodent reservoir, arenaviruses have the ability to establish persistent infection without any overt signs and symptoms of pathology. We believe that the modulation of the host cell's innate immunity by arenaviruses is a key determinant for persistence in the natural host and for the pathogenesis in man. In this thesis, we studied the interaction of arenaviruses with two main branches of the host's innate anti-viral defense, the type I interferon (IFN) system and virus-induced mitochondrial apoptosis. The arenavirus nucleoprotein (NP) is responsible for the anti-IFN activity of arenaviruses. Specifically, NP blocks the activation and the nuclear translocation of the transcription factor interferon regulatory factor 3 (IRF3) which leads to type I IFN production. LASV and the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) NPs contain a 3'-5'exoribonuclease domain in the C terminal part that has been linked to the anti-IFN activity of NP. In the first project, we sought to identify cellular component(s) of the type I IFN induction pathway targeted by the viral NP. Our study revealed that LCMV NP prevents the activation of IRF3 by blocking phosphorylation of the transcription factor. We found that LCMV NP specifically targets the IRF-activating kinase IKKs, and this specific binding is conserved within the Arenaviridae. We could also demonstrate that LCMV NP associates with the kinase domain of IKKs involving NP's C-terminal region. Lastly, we showed that the binding of LCMV NP inhibits the kinase activity of IKKs. This study allowed the discovery of a new cellular interacting partner of arenavirus NP. This newly described association may play a role in the anti-IFN activity of arenaviruses but potentially also in other aspects of arenavirus infection. For the second project, we investigated the ability of arenaviruses to avoid and/or suppress mitochondrial apoptosis. As persistent viruses, arenaviruses evolved a "hit and stay" survival strategy where the apoptosis of the host cell would be deleterious. We found that LCMV does not induce mitochondrial apoptosis at any time during infection. Specifically, no caspase activity, no cytochrome c release from the mitochondria as well as no cleavage of poly (ADP-ribose) polymerase (PARP) were detected during LCMV infection. Interestingly, we found that virus-induced mitochondrial apoptosis remains fully functional in LCMV infected cells, while the induction of type IIFN is blocked. Since both type IIFN production and virus- induced mitochondrial apoptosis critically depend on the pattern recognition receptor (PRR) RIG-I, we examined the role of RIG-I in apoptosis in LCMV infected cells. Notably, virus- induced mitochondrial apoptosis in LCMV infected cells was found to be independent of RIG- I and MDA5, but still depended on MAVS. Our study uncovered a novel mechanism by which arenaviruses alter the host cell's pro-apoptotic signaling pathway. This might represent a strategy arenaviruses developed to maintain this branch of the innate anti-viral defense in absence of type I IFN response. Taken together, these results allow a better understanding of the interaction of arenaviruses with the host cell's innate immunity, contributing to our knowledge about pathogenic properties of these important viruses. A better comprehension of arenavirus virulence may open new avenues for vaccine development and may suggest new antiviral targets for therapeutic intervention against arenavirus infections. - Les arenavirus sont des virus enveloppés à ARN simple brin qui comportent un grand nombre de pathogènes humains. Le pathogène humain le plus important parmi les arenavirus est le virus de Lassa qui est endémique en Afrique de l'Ouest, du Sénégal au Cameroun. Le virus de Lassa est l'agent étiologique d'une fièvre hémorragique sévère appelée fièvre de Lassa, et dont le taux de mortalité peut atteindre 30% chez les patients hospitalisés. L'une des caractéristiques principales des infections fatales à arenavirus chez l'Homme est l'absence de réponse immunitaire innée et adaptative. Dans la nature, les arenavirus sont hébergés par différentes espèces de rongeur, qui représentent à la fois les réservoirs naturels et les vecteurs de transmission des arenavirus. Dans leur hôte naturel, les arenavirus ont la capacité d'établir une infection persistante sans symptôme manifeste d'une quelconque pathologie. Nous pensons que la modulation de système immunitaire inné de la cellule hôte par les arenavirus est un paramètre clé pour la persistance au sein de l'hôte naturel, ainsi que pour la pathogenèse chez l'Homme. L'objectif de cette thèse était d'étudier l'interaction des arenavirus avec deux branches essentielles de la défense antivirale innée de la cellule hôte, le système interféron (IFN) de type I et l'apoptose. La nucléoprotéine virale (NP) est responsable de l'activité anti-IFN des arenavirus. Plus spécifiquement, la NP bloque 1'activation et la translocation nucléaire du facteur de transcription IRF3 qui conduit à la production des IFNs de type I. La NP du virus de Lassa et celle du virus de la chorioméningite lymphocytaire (LCMV), l'arénavirus prototypique, possèdent dans leur extrémité C-terminale un domaine 3'-5' exoribonucléase qui a été associé à l'activité anti-IFN de ces protéines. Dans un premier projet, nous avons cherché à identifier des composants cellulaires de la cascade de signalisation induisant la production d'IFNs de type I qui pourraient être ciblés par la NP virale. Nos recherches ont révélé que la NP de LCMV empêche 1'activation d'IRF3 en bloquant la phosphorylation du facteur de transcription. Nous avons découvert que la NP de LCMV cible spécifiquement la kinase IKKe, et que cette interaction spécifique est conservée à travers la famille des Arenaviridae. Notre étude a aussi permis de démontrer que la NP de LCMV interagit avec le domaine kinase d'IKKe et que l'extrémité C-terminale de la NP est impliquée. Pour finir, nous avons pu établir que l'association avec la NP de LCMV inhibe l'activité kinase d'IKKe. Cette première étude présente la découverte d'un nouveau facteur cellulaire d'interaction avec la NP des arenavirus. Cette association pourrait jouer un rôle dans l'activité anti-IFN des arénavirus, mais aussi potentiellement dans d'autres aspects des infections à arénavirus. Pour le second projet, nous nous sommes intéressés à la capacité des arénavirus à éviter et/ou supprimer l'apoptose mitochondriale. En tant que virus persistants, les arénavirus ont évolué vers une stratégie de survie "hit and stay" pour laquelle l'apoptose de la cellule hôte serait néfaste. Nous avons observé qu'à aucun moment durant l'infection LCMV n'induit l'apoptose mitochondriale. Spécifiquement, aucune activité de caspase, aucune libération mitochondriale de cytochrome c ainsi qu'aucun clivage de la polymerase poly(ADP-ribose) (PARP) n'a été détecté pendant l'infection à LCMV. Il est intéressant de noter que l'apoptose mitochondriale induite par les virus reste parfaitement fonctionnelle dans les cellules infectées par LCMV, alors que l'induction de la réponse IFN de type I est bloquée dans les mêmes cellules. La production des IFNs de type I et l'apoptose mitochondriale induite par les virus dépendent toutes deux du récepteur de reconnaissance de motifs moléculaires RIG-I. Nous avons, par conséquent, investigué le rôle de RIG-I dans l'apoptose qui a lieu dans les cellules infectées par LCMV lorsqu'on les surinfecte avec un autre virus pro-apoptotique. En particulier, l'apoptose mitochondriale induite par les surinfections s'est révélée indépendante de RIG-I et MDA5, mais dépendante de MAVS dans les cellules précédemment infectées par LCMV. Notre étude démontre ainsi l'existence d'un nouveau mécanisme par lequel les arénavirus altèrent la cascade de signalisation pro-apoptotique de la cellule hôte. Il est possible que les arénavirus aient développé une stratégie permettant de maintenir fonctionnelle cette branche de la défense antivirale innée en l'absence de réponse IFN de type I. En conclusion, ces résultats nous amènent à mieux comprendre l'interaction des arénavirus avec l'immunité innée de la cellule hôte, ce qui contribue aussi à améliorer notre connaissance des propriétés pathogéniques de ces virus. Une meilleure compréhension des facteurs de virulence des arénavirus permet, d'une part, le développement de vaccins et peut, d'autre part, servir de base pour la découverte de nouvelles cibles thérapeutiques utilisées dans le traitement des infections à arénavirus.
Resumo:
Calcineurin signaling plays diverse roles in fungi in regulating stress responses, morphogenesis and pathogenesis. Although calcineurin signaling is conserved among fungi, recent studies indicate important divergences in calcineurin-dependent cellular functions among different human fungal pathogens. Fungal pathogens utilize the calcineurin pathway to effectively survive the host environment and cause life-threatening infections. The immunosuppressive calcineurin inhibitors (FK506 and cyclosporine A) are active against fungi, making targeting calcineurin a promising antifungal drug development strategy. Here we summarize current knowledge on calcineurin in yeasts and filamentous fungi, and review the importance of understanding fungal-specific attributes of calcineurin to decipher fungal pathogenesis and develop novel antifungal therapeutic approaches.
Resumo:
The inheritance of resistance to powdery mildew in the pea cultivar MK-10 and some histological aspects of infection were assessed. For the inheritance study, F1, F2, backcrosses and F3 generations of MK-10 crossed with two susceptible populations were evaluated. Histological evaluations included percentage of germinated conidia, percentage of conidia that formed appresoria, percentage of conidia that established colonies, and number of haustoria per colony. Segregation ratios obtained in the resistance inheritance study were compared by Chi-square (ײ) test and the histological data were analyzed by Tukey's test at 5% probability. It was concluded that resistance of MK-10 to powdery mildew is due to a pair of recessive alleles since it is expressed in the pre-penetration stage and completed by post-penetration localized cellular death, characteristic of the presence of the pair of recessive alleles er1er1.
Resumo:
Antiphospholipid antibodies (aPL) are a heterogeneous group of antibodies that are detected in the serum of patients with a variety of conditions, including autoimmune (systemic lupus erythematosus), infectious (syphilis, AIDS) and lymphoproliferative disorders (paraproteinemia, myeloma, lymphocytic leukemias). Thrombosis, thrombocytopenia, recurrent fetal loss and other clinical complications are currently associated with a subgroup of aPL designating the antiphospholipid syndrome. In contrast, aPL from patients with infectious disorders are not associated with any clinical manifestation. These findings led to increased interest in the origin and pathogenesis of aPL. Here we present the clinical features of the antiphospholipid syndrome and review the origin of aPL, the characteristics of experimentally induced aPL and their historical background. Within this context, we discuss the most probable pathogenic mechanisms induced by these antibodies.
Resumo:
A herança da resistência ao oídio na cultivar de ervilha MK-10 e alguns aspectos histológicos da infecção foram estudados. Para o estudo da herança, as gerações F1, F2, retrocuzamentos e geração F3 de MK-10 com duas populações suscetíveis foram avaliadas. Nas avaliações histológicas observou-se a porcentagem de conídios germinados, porcentagem de conídios que formaram apressório, porcentagem de conídios que estabeleceram colônia e número de haustórios por colônia. Para comparar as razões de segregação obtidas no estudo da herança da resistência, adotou-se o teste do Qui-quadrado (X²) e para os dados das análises histológicas, utilizou-se o teste Tukey a 5% de probabilidade. Concluiu-se que a resistência de MK-10 ao oídio é devida a um par de alelos recessivos e que a resistência é expressa na fase de pré-penetração, completada por uma morte celular localizada pós-penetração, característica da presença do par de alelos recessivos er1er1.
Resumo:
An experiment was conducted to examine the influence of dietary protein and immunisation on parasite establishment and pathogenesis of Haemonchus placei in calves. Four groups of 4-6-month-old worm-free calves (n=4) were given a low protein diet (LP) containing 213 g crude protein (CP) per head per day or a high-protein diet (HP) containing 469 g per head per day CP. Five weeks later, calves in one of the two groups of each dietary treatment were given 50 000 H. placei infective larvae (L(3)). Twenty-five days later, infection in these groups was terminated by dosing with oxfendazole, This immunisation process was repeated 4 days later. Four days after termination of the second immunisation all calves were challenged with 100 000 L(3). Five weeks later, all calves were slaughtered for abomasal worm counts. Worm establishment was lower in the immunised groups; however, only the HP-I group showed a significant reduction (P < 0.05). All calves gained weight during the first 13 week period, and after challenge the non-immunised groups lost weight, independent of the level of protein in the diet (P < 0.05), Packed cell volume values for all treatments only dropped after challenge (P < 0.05) and the HP-immunised group presented values significantly higher when compared with the other treatments, All calves were hypoproteinaemic and hypoalbuminaemic at the end of the experiment, regardless of the treatment. Immunised calves showed a normocytic normochromic anaemia, while the non-immunised groups presented a microcytic normochromic anaemia.
Resumo:
Previous studies have shown that long-term alcohol treatment has negative effects on prostatic stromal-epithelial interaction. Thus, the aim of the present study was to analyze the histochemical, immunohistochemical and ultrastructural alterations that occur in the prostatic stroma and epithelium of rats submitted to chronic alcohol ingestion and alcohol abstinence, as well as to establish the relationship between these changes and prostatic diseases. Thirty male rats (10 Wistar and 20 UChB rats) were divided into three experimental groups: the control group received tap water, the alcoholic group received ethanol diluted to 10 degrees G.L. for 150 days, and the abstinent group received the same liquid diet as the alcoholic group up to 120 days of treatment and only tap water for 30 days thereafter. At the end of treatment, all animals were sacrificed and the ventral lobe of the prostate was removed and processed for histochemical, immunohistochemical and ultrastructural analyses. In addition, plasma testosterone levels were measured. The results showed, prostatic intraepithelial neoplasia, infolding of the epithelium towards the stroma, stromal hypertrophy and the presence of inflammatory cells in alcoholic animals. In the abstinent group, alterations were noted mainly in the stromal area. In conclusion, ethanol triggers alterations in prostatic epithelial and stromal compartments, affecting the stromal microenvironment and predisposing the organ to pathological processes. (C) 2006 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved.
Resumo:
We present a fast procedure for scanning electron microscopy (SEM) analysis in which hexamethyldisilazane (HMDS) solvent, instead of the critical point drying, is used to remove liquids from a microbiological specimen. The results indicate that the HMDS solvent is suitable for drying samples of anaerobic cells for examination by SEM and does not cause cell structure disruption.
Resumo:
The surface glycoprotein gp43, a highly immunogenic component of Paracoccidioides brasiliensis, is used in the serodiagnosis of paracoccidioidomycosis (PCM) and has recently been shown to specifically bind the extracellular matrix protein laminin, Binding to laminin induces the increased adhesion of the fungus to epithelial cells; a hamster testicle infection model has shown that the gp43-dependent binding of fungal cells to laminin enhances their pathogenicity in vivo. We report on the production and characterization of 12 monoclonal antibodies against the gp43 that recognize peptide sequences in the molecule detecting at least three different epitopes as well as different isoforms of this antigen. MAbs interfered in the fungal pathogenicity in vivo either by inhibiting or enhancing granuloma formation and tissue destruction, Results suggest that P. brasiliensis propagules may start infection in man by strongly adhering to human lung cells, Thus, laminin-mediated fungal adhesion to human lung carcinoma (A549) cells was much more intense than to Madin-Darby canine kidney cells (MDCK), indicating differences in binding affinity, Subsequent growth of fungi bound to the lung cells could induce the granulomatous inflammatory reaction characteristic of PCM. Both steps are greatly stimulated by laminin binding in infective cells expressing gp43.
Resumo:
Leptospira species colonize a significant proportion of rodent populations worldwide and produce life-threatening infections in accidental hosts, including humans. Complete genome sequencing of Leptospira interrogans serovar Copenhageni and comparative analysis with the available Leptospira interrogans serovar Lai genome reveal that despite overall genetic similarity there are significant structural differences, including a large chromosomal inversion and extensive variation in the number and distribution of insertion sequence elements. Genome sequence analysis elucidates many of the novel aspects of leptospiral physiology relating to energy metabolism, oxygen tolerance, two-component signal transduction systems, and mechanisms of pathogenesis. A broad array of transcriptional regulation proteins and two new families of afimbrial adhesins which contribute to host tissue colonization in the early steps of infection were identified. Differences in genes involved in the biosynthesis of lipopolysaccharide 0 side chains between the Copenhageni and Lai serovars were identified, offering an important starting point for the elucidation of the organism's complex polysaccharide surface antigens. Differences in adhesins and in lipopolysaccharide might be associated with the adaptation of serovars Copenhageni and Lai to different animal hosts. Hundreds of genes encoding surface-exposed lipoproteins and transmembrane outer membrane proteins were identified as candidates for development of vaccines for the prevention of leptospirosis.
Resumo:
Atherosclerosis is a very common and important disease being the most important cause of mortality in Brazil. Indeed, in 1995, 23.3% of deaths, all ages, in our country, were the consequence of atherosclerosis. This percentage grows to 26.3% for S. Paulo and 32.7% for Rio Grande do Sul. Morphologically, there are 3 main types of lesions: fatty streaks, fibrous plaques, and complicated lesions. Fatty streaks are inocuous and occur early in life. In some persons, with age, they change into fibrous plaques that may lead to stenosis. They also may become complicated by erosion, calcification, hemorrhage and thrombosis. Atherosclerosis is initiated by endothelial functional alterations responsible for increase in permeability to macromolecules, adhesion, and migration of monocytes-macrophages and lymphocytes plus recruitment of platelets and smooth-muscle medial cells. Adhesion molecules, cytokines, growth factors, and free radicals are locally synthesized, favoring proliferation of extracellular matrix and progression of the lesion. Experimental, clinical, and epidemiological evidence point to the importance of lipids, mainly cholesterol-rich low-density lipoprotein (LDL), as one of the most important molecules involved in the genesis and progression of atherosclerosis. Patients with a genetic disorder of cholesterol metabolism (familial hyperlipidemia), caused by a decrease in the availability of receptors for LDL, develop severe atherosclerosis early in life. A series of other factors, such as age, diabetes melitus, diet, hypertension, lack of exercise, elevated hemocysteinemia, immunological disorders, and coagulation instability, are related to the progression of atherosclerosis. All of them are capable of altering the endothelium or increasing the offer of LDL. All the above-mentioned factors are systemic; but atherosclerosic lesions are focal, located at preferential sites such as the emergence of colaterals, bifurcations, and curvatures of arteries, all areas in which the laminar flow is disturbed. In these areas shear stress is diminished favoring the prolongation of permanence time of lipid particles, cells, cytokines, growth factors, etc., in the vicinity of the endothelium. Moreover, the endothelium has sensors that act as transducers of mechanical forces in biological responses. Experimental data demonstrate that the number and quality of adhesion molecules, cytokines, and growth factors synthetized, as well as the local production of radicals, and pro and anticoagulation factors may change with shear stress favoring or not the local establishment and progression of atherosclerotic lesions.
Resumo:
Photodynamic therapy (PDT) is a technique that involves the activation of photosensitizers by light in the presence of oxygen, resulting in the production of reactive radicals that are capable of inducing cell death. The present study evaluated the susceptibility of Streptococcus mutans and Lactobacillus acidophilus to PDT grown as multi-species in the biofilm phase versus in dentine carious lesions. A brain-heart infusion culture medium supplemented with 1 % glucose, 2 % sucrose, and 1 % young primary culture of L. acidophilus 108 CFU/mL and S. mutans 108 CFU/mL was used to develop multi-species biofilms and to induce caries on human dentine slabs. Five different concentrations of curcumin (0.75, 1.5, 3.0, 4.0, and 5.0 g/L) were used associated with 5.7 J/cm2 light emission diode. Four different groups were analyzed L-D- (control group), L-D+ (drug group), L+D- (light group), and L+D+ (PDT group). ANOVA/Tukey's tests were conducted to compare groups. A significant reduction (p <0.05) in cell viability was observed in the biofilm phase following photosensitization with all curcumin concentrations tested. To achieve significant bacterial reduction (p <0.05) in carious dentine, it was necessary to utilize 5.0 g/L of curcumin in association with blue light. No significant reduction was found for L-D+, supporting the absence of the drug's dark toxicity. S. mutans and L. acidophilus were susceptible to curcumin in the presence of blue light. However, due to light penetration and drug diffusion difficulties, these microorganisms within dentine carious lesions were less affected than they were in the biofilm phase. © 2013 Springer-Verlag London.