153 resultados para Bioenergetics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To measure renal adenosine triphosphate (ATP) (bioenergetics) during hypotensive sepsis with or without angiotensin II (Ang II) infusion. Methods: In anaesthetised sheep implanted with a renal artery flow probe and a magnetic resonance coil around one kidney, we induced hypotensive sepsis with intravenous Escherichia coli injection. We measured mean arterial pressure (MAP), heart rate, renal blood flow RBF and renal ATP levels using magnetic resonance spectroscopy. After 2 h of sepsis, we randomly assigned sheep to receive an infusion of Ang II or vehicle intravenously and studied the effect of treatment on the same variables. Results: After E. coli administration, the experimental animals developed hypotensive sepsis (MAP from 92 ± 9 at baseline to 58 ± 4 mmHg at 4 h). Initially, RBF increased, then, after 4 h, it decreased below control levels (from 175 ± 28 at baseline to 138 ± 27 mL/min). Despite decreased RBF and hypotension, renal ATP was unchanged (total ATP to inorganic phosphate ratio from 0.69 ± 0.02 to 0.70 ± 0.02). Ang II infusion restored MAP but caused significant renal vasoconstriction. However, it induced no changes in renal ATP (total ATP to inorganic phosphate ratio from 0.79 ± 0.03 to 0.80 ± 0.02). Conclusions:During early hypotensive experimental Gram-negative sepsis, there was no evidence of renal bioenergetic failure despite decreased RBF. In this setting, the addition of a powerful renal vasoconstrictor does not lead to deterioration in renal bioenergetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a bioenergetics model, we estimated daily ration and seasonal prey consumption rates for six age classes of juvenile sandbar sharks (Carcharhinus plumbeus) in the lower Chesapeake Bay summer nursery area. The model, incorporating habitat and species-specific data on growth rates, metabolic rate, diet composition, water temperature (range 16.8−27.9°C), and population structure, predicted mean daily rations between 2.17 ±0.03 (age-0) and 1.30 ±0.02 (age-5) % body mass/day. These daily rations are higher than earlier predictions for sandbar sharks but are comparable to those for ecologically similar shark species. The total nursery population of sandbar sharks was predicted to consume ~124,000 kg of prey during their 4.5 month stay in the Chesapeake Bay nursery. The predicted consumption rates support the conclusion that juvenile sandbar sharks exert a lesser top-down effect on the Chesapeake Bay ecosystem than do teleost piscivores and hu

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fish bioenergetics models estimate relationships between energy budgets and environmental and physiological variables. This study presents a generic rockfish (Sebastes) bioenergetics model and estimates energy consumption by northern California blue rockf ish (S. mystinus) under average (baseline) and El Niño conditions. Compared to males, female S. mystinus required more energy because they were larger and had greater reproductive costs. When El Niño conditions (warmer temperatures; lower growth, condition, and fecundity) were experienced every 3−7 years, energy consumption decreased on an individual and a per-recruit basis in relation to baseline conditions, but the decrease was minor (<4% at the individual scale, <7% at the per-recruit scale) compared to decreases in female egg production (12−19% at the individual scale, 15−23% at the per-recruit scale). When mortality in per-recruit models was increased by adding fishing, energy consumption in El Niño models grew more similar to that seen in the baseline model. However, egg production decreased significantly — an effect exacerbated by the frequency of El Niño events. Sensitivity analyses showed that energy consumption estimates were most sensitive to respiration parameters, energy density, and female fecundity, and that estimated consumption increased as parameter uncertainty increased. This model provides a means of understanding rockfish trophic ecology in the context of community structure and environmental change by synthesizing metabolic, demographic, and environmental information. Future research should focus on acquiring such information so that models like the bioenergetics model can be used to estimate the effect of climate change, community shifts, and different harvesting strategies on rockfish energy demands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was made as an attempt to investigate some of the ecological aspects of the freshwater snail Idiopoma angularis Muller in a modern framework of energy flow and mathematical models. It offers the first investigation of respiration (as related to temperature and body size), production (growth), and excretion in the prosobranch I. angularis in Laguna Lake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In trypanosomatids the involvement of mitochondrial complex I in NADH oxidation has long been debated. Here, we took advantage of natural Trypanosoma cruzi mutants which present conspicuous deletions in ND4, ND5 and ND7 genes coding for complex I subunits to further investigate its functionality. Mitochondrial bioenergetics of wild type and complex I mutants showed no significant differences in oxygen consumption or respiratory control ratios in the presence of NADH-linked substrates or FADH(2)-generating succinate. No correlation could be established between mitochondrial membrane potentials and ND deletions. Since release of reactive oxygen species occurs at complex I, we measured mitochondrial H(2)O(2) formation induced by different substrates. Significant differences not associated to ND deletions were observed among the parasite isolates, demonstrating that these mutations are not important for the control of oxidant production. Our data support the notion that complex I has a limited function in T. cruzi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous research has demonstrated the effects of ostensible subtle energy on physical systems and subjective experience. However, one subtle energy technique that has been neglected by previous studies, despite anecdotal support for its efficacy, is Quantum BioEnergetics (QBE). Furthermore, personality traits that influence subtle energy effects remain unclear, and previous experimental studies have not investigated the constructs of Love and Joy, despite qualitative and anecdotal reports indicating that these variants of positive affect are essential elements of the subtle energy experience. The aim of the present study was to investigate experimentally the effects of QBE, and the personality trait Mental Boundaries, on positive and negative affect. Participants (N = 69) were administered the Boundary Questionnaire Short Form to quantify Boundaries, and then randomly assigned to one of three conditions: QBE, Placebo ("sham"), or Control. Affect was retrospectively assessed using the Positive and Negative Affect subdimensions of the Phenomenology of Consciousness Inventory (PCI). As predicted, a significant multivariate effect for condition was found with regards to the PCI subdimensions: Joy, Sexual Excitement, Love, Anger, Sadness, and Fear. In contrast to our expectations, a significant multivariate effect was not found for Boundaries with regards to the combined PCI-Affect variables. As hypothesized, significant interactions were found between condition and Boundaries with regards to Positive Affect, Love and Joy, with the QBE/Thin Boundaries factorial combination associated with the highest mean scores for these dependent variables. It will be prudent to ascertain whether these results are replicated in a larger sample and a placebo condition that improves on the standard randomized placebocontrolled protocols of previous subtle energy research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bertuzzi, R, Bueno, S, Pasqua, LA, Acquesta, FM, Batista, MB, Roschel, H, Kiss, MAPDM, Serrao, JC, Tricoli, V, and Ugrinowitsch, C. Bioenergetics and neuromuscular determinants of the time to exhaustion at velocity corresponding to (V) over dotO(2)max in recreational long-distance runners. J Strength Cond Res 26(8): 2096-2102, 2012-The purpose of this study was to investigate the main bioenergetics and neuromuscular determinants of the time to exhaustion (T-lim) at the velocity corresponding to maximal oxygen uptake in recreational long-distance runners. Twenty runners performed the following tests on 5 different days: (a) maximal incremental treadmill test, (b) 2 submaximal tests to determine running economy and vertical stiffness, (c) exhaustive test to measured the T-lim, (d) maximum dynamic strength test, and (e) muscle power production test. Aerobic and anaerobic energy contributions during the T-lim test were also estimated. The stepwise multiple regression method selected 3 independent variables to explain T-lim variance. Total energy production explained 84.1% of the shared variance (p = 0.001), whereas peak oxygen uptake ((V) over dotO(2)peak) measured during T-lim and lower limb muscle power ability accounted for the additional 10% of the shared variance (p = 0.014). These data suggest that the total energy production, (V) over dotO(2)peak, and lower limb muscle power ability are the main physiological and neuromuscular determinants of T-lim in recreational long-distance runners.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondria have a central role in energy supply in cells, ROS production and apoptosis and have been implicated in several human disease and mitochondrial dysfunctions in hypoxia have been related with disorders like Type II Diabetes, Alzheimer Disease, inflammation, cancer and ischemia/reperfusion in heart. When oxygen availability becomes limiting in cells, mitochondrial functions are modulated to allow biologic adaptation. Cells exposed to a reduced oxygen concentration readily respond by adaptive mechanisms to maintain the physiological ATP/ADP ratio, essential for their functions and survival. In the beginning, the AMP-activated protein kinase (AMPK) pathway is activated, but the responsiveness to prolonged hypoxia requires the stimulation of hypoxia-inducible factors (HIFs). In this work we report a study of the mitochondrial bioenergetics of primary cells exposed to a prolonged hypoxic period . To shine light on this issue we examined the bioenergetics of fibroblast mitochondria cultured in hypoxic atmospheres (1% O2) for 72 hours. Here we report on the mitochondrial organization in cells and on their contribution to the cellular energy state. Our results indicate that prolonged hypoxia cause a significant reduction of mitochondrial mass and of the quantity of the oxidative phosphorylation complexes. Hypoxia is also responsible to damage mitochondrial complexes as shown after normalization versus citrate synthase activity. HIF-1α plays a pivotal role in wound healing, and its expression in the multistage process of normal wound healing has been well characterized, it is necessary for cell motility, expression of angiogenic growth factor and recruitment of endothelial progenitor cells. We studied hypoxia in the pathological status of diabetes and complications of diabetes and we evaluated the combined effect of hyperglycemia and hypoxia on human dermal fibroblasts (HDFs) and human dermal micro-vascular endothelial cells (HDMECs) that were grown in high glucose, low glucose concentrations and mannitol as control for the osmotic challenge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enterococcus hirae ATCC 9790 is a Gram-positive lactic acid bacterium that has been used in basic research for over 4 decades. Here we report the sequence and annotation of the 2.8-Mb genome of E. hirae and its endemic 29-kb plasmid pTG9790.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adult anchovies in the Bay of Biscay perform north to south migration from late winter to early summer for spawning. However, what triggers and drives the geographic shift of the population remains unclear and poorly understood. An individual-based fish model has been implemented to explore the potential mechanisms that control anchovy's movement routes toward its spawning habitats. To achieve this goal, two fish movement behaviors – gradient detection through restricted area search and kinesis – simulated fish response to its dynamic environment. A bioenergetics model was used to represent individual growth and reproduction along the fish trajectory. The environmental forcing (food, temperature) of the model was provided by a coupled physical–biogeochemical model. We followed a hypothesis-testing strategy to actualize a series of simulations using different cues and computational assumptions. The gradient detection behavior was found as the most suitable mechanism to recreate the observed shift of anchovy distribution under the combined effect of sea-surface temperature and zooplankton. In addition, our results suggested that southward movement occurred more actively from early April to middle May following favorably the spatio-temporal evolution of zooplankton and temperature. In terms of fish bioenergetics, individuals who ended up in the southern part of the bay presented better condition based on energy content, proposing the resulting energy gain as an ecological explanation for this migration. The kinesis approach resulted in a moderate performance, producing distribution pattern with the highest spread. Finally, model performance was not significantly affected by changes on the starting date, initial fish distribution and number of particles used in the simulations, whereas it was drastically influenced by the adopted cues.