919 resultados para Bioelectrical impedance spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The assessment of fluid volume in neonates by a noninvasive, inexpensive, and fast method can contribute significantly to increase the quality of neonatal care. The objective of the present study was to calibrate an acquisition system and software to estimate the bioelectrical impedance parameters obtained by a method of bioelectrical impedance spectroscopy based on step response and to develop specific equations for the neonatal population to determine body fluid compartments. Bioelectric impedance measurements were performed by a laboratory homemade instrument. The volumes were estimated in a clinical study on 30 full-term neonates at four different times during the first month of life. During the first 24 hours of life the total body water, extracellular water and intracellular water were 2.09 ± 0.25, 1.20 ± 0.19, and 0.90 ± 0.25 liters, respectively. By the 48th hour they were 1.87 ± 0.27, 1.08 ± 0.17, and 0.79 ± 0.21 liters, respectively. On the 10th day they were 2.02 ± 0.25, 1.29 ± 0.21, and 0.72 ± 0.14 liters, respectively, and after 1 month they were 2.34 ± 0.27, 1.62 ± 0.20, and 0.72 ± 0.13 liters, respectively. The behavior of the estimated volume was correlated with neonatal body weight changes, leading to a better interpretation of such changes. In conclusion, this study indicates the feasibility of bioelectrical impedance spectroscopy as a method to help fluid administration in intensive care neonatal units, and also contribute to the development of new equations to estimate neonatal body fluid contents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

.:Abstract-Objective: Bioelectrical impedance analysis (BIA) is widely used as bedside assessment of body composition. Body cell mass (BCM) and intracellular water (ICW) are clinically important body compartments. Estimates of ICW obtained from BIA by different calculation approaches were compared to a reference method in male HIV-infected patients. Patients: Representative subsample of clinically stable HIV-infected outpatients, consisting of 42 men with a body mass index of 22.4 +/- 3.8 kg/m(2) (range, 13-31 kg/m(2)). Methods: Total body potassium was assessed in a whole body counter, and compared to 50 kHz mono-frequency BIA and multifrequency bioelectrical impedance spectroscopy. Six different prediction equations for ICW from BIA data were applied. Methods were compared by the Bland-Altman method. Results: BIA-derived ICW estimates explained 58% to 73% of the observed variance in ICW (TBK), but limits of confidence were wide (-16.6 to +18.2% for the best method). BIA overestimated low ICW (TBK) and underestimated high ICW (TBK) when normalized for weight or height. Mono- and multifrequency BIA were not different in precision but population-specific equations tended to narrower confidence limits. Conclusion: BIA is an unreliable method to estimate ICW in this population, in contrast to the better established estimation of total body water and extracellular water. Potassium depletion in severe malnutrition may contribute to this finding but a major part of the residual between methods remains unexplained. (C) 2000 Harcourt Publishers Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Potential errors in the application of mixture theory to the analysis of multiple-frequency bioelectrical impedance data for the determination of body fluid volumes are assessed. Potential sources of error include: conductive length; tissue fluid resistivity; body density; weight and technical errors of measurement. Inclusion of inaccurate estimates of body density and weight introduce errors of typically < +/-3% but incorrect assumptions regarding conductive length or fluid resistivities may each incur errors of up to 20%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventional bioimpedance spectrometers measure resistance and reactance over a range of frequencies and, by application of a mathematical model for an equivalent circuit (the Cole model), estimate resistance at zero and infinite frequencies. Fitting of the experimental data to the model is accomplished by iterative, nonlinear curve fitting. An alternative fitting method is described that uses only the magnitude of the measured impedances at four selected frequencies. The two methods showed excellent agreement when compared using data obtained both from measurements of equivalent circuits and of humans. These results suggest that operational equivalence to a technically complex, frequency-scanning, phase-sensitive BIS analyser could be achieved from a simple four-frequency, impedance-only analyser.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we investigate the influence of the adsorption of ions on the impedance spectroscopy of an electrolytic cell. We consider that the positive and negative ions present in a dielectric liquid are adsorbed in the electrode surfaces with different adsorption energies. This difference in adsorption energies causes an additional plateaux in the limit of the low-frequency range of the real part of the impedance Z. In the same frequency range, a second minimum in the imaginary part of Z is predicted. The theory is illustrated with measurements of the impedance of an electrolytic solution in the frequency range from 10(-2) Hz to 1 KHz. A comparison between the present model and others from the literature to describe the experimental results is also made.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to rain events historical monuments exposed to the atmosphere are frequently submitted to wet and dry cycles. During drying periods wetness is maintained in some confined regions and the corrosion product layer, generally denominated patinas, builds up and gets thicker. The aim of this study is to use electrochemical impedance spectroscopy (EIS) to investigate the electrochemical behaviour of pure copper coated with two artificial patina layers and submitted either to continuous or to intermittent immersion tests, this latter aiming to simulate wet and dry cycles. The experiments were performed in 0.1 mol dm(-3) NaCl solution and in artificial rainwater containing the most significant pollutants of the city of Sao Paulo. The results of the continuous immersion tests in the NaCl solution have shown that the coated samples behave like a porous electrode with finite pore length. On the other hand, in the intermittent tests a porous electrode response with semi-infinite pore length can be developed. The results were interpreted based on the model of de Levie and a critical comparison with previous interpretations reported in the literature for similar systems is presented. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioelectrical impedance analysis (BIA) was used to assess body composition in rats fed on either standard laboratory diet or on a high-fat diet designed to induce obesity. Bioelectrical impedance analysis predictions of total body water and thus fat-free mass (FFM) for the group mean values were generally within 5% of the measured values by tritiated water ((H2O)-H-3) dilution. The limits of agreement for the procedure were, however, large, approximately +/-25%, limiting the applicability of the technique for measurement of body composition in individual animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multifrequency bioimpedance analysis has the potential to provide a non-invasive technique for determining body composition in live cattle. A bioimpedance meter developed for use in clinical medicine was adapted and evaluated in 2 experiments using a total of 31 cattle. Prediction equations were obtained for total body water, extracellular body water, intracellular body water, carcass water and carcass protein. There were strong correlations between the results obtained through chemical markers and bioimpedance analysis when determined in cattle that had a wide range of liveweights and conditions. The r(2) values obtained were 0.87 and 0.91 for total body water and extracellular body water respectively. Bioimpedance also correlated with carcass water, measured by chemical analysis (r(2) = 0.72), but less well with carcass protein (r(2) = 0.46). These correlations were improved by inclusion of liveweight and sex as variables in multiple regression analysis. However, the resultant equations were poor predictors of protein and water content in the carcasses of a group of small underfed beef cattle, that had a narrow range of liveweights. In this case, although there was no statistical difference between the predicted and measured values overall, bioimpedance analysis did not detect the differences in carcass protein between the 2 groups that were apparent following chemical analysis. Further work is required to determine the sensitivity of the technique in small underfed cattle, and its potential use in heavier well fed cattle close to slaughter weight.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of three analytical methods for multiple-frequency bioelectrical impedance analysis (MFBIA) data was assessed. The methods were the established method of Cole and Cole, the newly proposed method of Siconolfi and co-workers and a modification of this procedure. Method performance was assessed from the adequacy of the curve fitting techniques, as judged by the correlation coefficient and standard error of the estimate, and the accuracy of the different methods in determining the theoretical values of impedance parameters describing a set of model electrical circuits. The experimental data were well fitted by all curve-fitting procedures (r = 0.9 with SEE 0.3 to 3.5% or better for most circuit-procedure combinations). Cole-Cole modelling provided the most accurate estimates of circuit impedance values, generally within 1-2% of the theoretical values, followed by the Siconolfi procedure using a sixth-order polynomial regression (1-6% variation). None of the methods, however, accurately estimated circuit parameters when the measured impedances were low (<20 Omega) reflecting the electronic limits of the impedance meter used. These data suggest that Cole-Cole modelling remains the preferred method for the analysis of MFBIA data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluid shifts from intracellular to extracellular water (ICW to ECW) are a feature of sepsis, caused by increased vascular permeability and cell catabolism. Changes in ECW and total body water (TBW) were assessed in a prospective observational study of patients with bacteremia by a bedside technique, and its prognostic impact determined; In 78 hospital patients with fever, the resistance ratio (Rinf/RO) and estimated ECW/TBW ratio from multifrequency bioelectrical impedance analysis, and serum albumin concentration were measured. Rinf/RO and ECW/TBW ratios decreased from day 0 to 2 in patients with significant bacteremia (n = 31), but not in patients with doubtful or negative blood cultures (n = 22 and 25), Increased Rinf/RO at baseline, and further increase of ECW/TBW from day 0 to 2, were associated with lower rate of recovery after 1 week and with higher mortality. Baseline Rinf/RO above the median (0.75) had positive and negative predictive values of 0.31 and 0.95 for death. This prognostic effect was independent of underlying disease and blood culture result in a multivariate model. Hypoalbuminemia at baseline was predictive of outcome, but changes in albumin from day 0 to 2 were unrelated to blood culture results or outcome. In patients with bacteremia,fluid shifts from intracellular to extracellular,vater occur early are rapidly reversible by antibiotic treatment but are associated with adverse prognosis. Bioelectrical impedance deserves further study as a tool for bedside monitoring of patients with bacteremia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic resonance imaging (MRI) was used to evaluate and compare with anthropometry a fundamental bioelectrical impedance analysis (BIA) method for predicting muscle and adipose tissue composition in the lower limb. Healthy volunteers (eight men and eight women), aged 41 to 62 years, with mean (S.D.) body mass indices of 28.6 (5.4) kg/m(2) and 25.1 (5.4) kg/m(2) respectively, were subjected to MRI leg scans, from which 20-cm sections of thigh and IO-cm sections of lower leg (calf) were analysed for muscle and adipose tissue content, using specifically developed software. Muscle and adipose tissue were also predicted from anthropometric measurements of circumferences and skinfold thicknesses, and by use of fundamental BIA equations involving section impedance at 50 kHz and tissue-specific resistivities. Anthropometric assessments of circumferences, cross-sectional areas and volumes for total constituent tissues matched closely MRI estimates. Muscle volume was substantially overestimated (bias: thigh, -40%; calf, -18%) and adipose tissue underestimated (bias: thigh, 43%; calf, 8%) by anthropometry, in contrast to generally better predictions by the fundamental BIA approach for muscle (bias:thigh, -12%; calf, 5%) and adipose tissue (bias:thigh, 17%; calf, -28%). However, both methods demonstrated considerable individual variability (95% limits of agreement 20-77%). In general, there was similar reproducibility for anthropometric and fundamental BIA methods in the thigh (inter-observer residual coefficient of variation for muscle 3.5% versus 3.8%), but the latter was better in the calf (inter-observer residual coefficient of variation for muscle 8.2% versus 4.5%). This study suggests that the fundamental BIA method has advantages over anthropometry for measuring lower limb tissue composition in healthy individuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioelectrical impedance analysis has found extensive application as a simple noninvasive method for the assessment of body fluid volumes, The measured impedance is, however, not only related to the volume of fluid but also to its inherent resistivity. The primary determinant of the resistivities of body fluids is the concentration of ions. The aim of this study was to investigate the sensitivity of bioelectrical impedance analysis to bodily ion status. Whole body impedance over a range of frequencies (4-1012 kHz) of rats was measured during infusion of various concentrations of saline into rats concomitant with measurement of total body and intracellular water by tracer dilution techniques. Extracellular resistance (R-o), intracellular resistance (R-i) and impedance at the characteristic frequency (Z(c)) were calculated. R-o and Z(c) were used to predict extracellular and total body water respectively using previously published formulae. The results showed that whilst R-o and Z(c) decreased proportionately to the amount of NaCl infused, R-i increased only slightly. Impedances at the end of infusion predicted increases iu TBW and ECW of approximately 4-6% despite a volume increase of less than 0.5% in TBW due to the volume of fluid infused. These data are discussed in relation to the assumption of constant resistivity in the prediction of fluid volumes from impedance data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the present study was to evaluate the performance of a new bioelectrical impedance instrument, the Soft Tissue Analyzer (STA), which predicts a subject's body composition. A cross-sectional population study in which the impedance of 205 healthy adult subjects was measured using the STA. Extracellular water (ECW) volume (as a percentage of total body water, TBW) and fat-free mass (FFM) were predicted by both the STA and a compartmental model, and compared according to correlation and limits of agreement analysis, with the equivalent data obtained by independent reference methods of measurement (TBW measured by D2O dilution, and FFM measured by dual-energy X-ray absorptiometry). There was a small (2.0 kg) but significant (P < 0.02) difference in mean FFM predicted by the STA, compared with the reference technique in the males, but not in the females (-0.4 kg) or in the combined group (0.8 kg). Both methods were highly correlated. Similarly, small but significant differences for predicted mean ECW volume were observed. The limits of agreement for FFM and ECW were -7.5-9.9 and -4.1-3.0 kg, respectively. Both FFM and ECW (as a percentage of TBW) are well predicted by the STA on a population basis, but the magnitude of the limits of agreement with reference methods may preclude its usefulness for predicting body composition in an individual. In addition, the theoretical basis of an impedance method that does not include a measure of conductor length requires further validation. (C) Elsevier Science Inc. 2000.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

N,N-dimethyl-pyrrolidinium iodide has been investigated using differential scanning calorimetry, nuclear magnetic resonance (NMR) spectroscopy, second moment calculations, and impedance spectroscopy. This pyrrolidinium salt exhibits two solid-solid phase transitions, one at 373 K having an entropy change, Delta S, of 38 J mol(-1) K-1 and one at 478 K having Delta S of 5.7 J mol(-1) K-1. The second moment calculations relate the lower temperature transition to a homogenization of the sample in terms of the mobility of the cations, while the high temperature phase transition is within the temperature region of isotropic tumbling of the cations. At higher temperatures a further decrease in the H-1 NMR linewidth is observed which is suggested to be due to diffusion of the cations. (C) 2005 American Institute of Physics.