994 resultados para Biodiesel technology


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The insecure supply of fossil fuel coerces the scientific society to keep a vision to boost investments in the renewable energy sector. Among the many renewable fuels currently available around the world, biodiesel offers an immediate impact in our energy. In fact, a huge interest in related research indicates a promising future for the biodiesel technology. Heterogeneous catalyzed production of biodiesel has emerged as a preferred route as it is environmentally benign needs no water washing and product separation is much easier. The number of well-defined catalyst complexes that are able to catalyze transesterification reactions efficiently has been significantly expanded in recent years. The activity of catalysts, specifically in application to solid acid/base catalyst in transesterification reaction depends on their structure, strength of basicity/acidity, surface area as well as the stability of catalyst. There are various process intensification technologies based on the use of alternate energy sources such as ultrasound and microwave. The latest advances in research and development related to biodiesel production is represented by non-catalytic supercritical method and focussed exclusively on these processes as forthcoming transesterification processes. The latest developments in this field featuring highly active catalyst complexes are outlined in this review. The knowledge of more extensive research on advances in biofuels will allow a deeper insight into the mechanism of these technologies toward meeting the critical energy challenges in future.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper analyzes the international technological production on biodiesel using bibliometric indicators of patents. The data were gathered from Derwent Innovations Index, from 2000 to 2007. The evolution of patent registration by organizations and individuals was analyzed as well as the classification of inventions. The results are useful to visualize the dynamics of technological production on biodiesel and lay grounds for reflections on use of bibliometric indicators and for ST&I policy in the biodiesel field.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Se explica las posibles razones que han obligado a varias de las plantas de biodiésel en España a cerrar a pesar de estar siendo auspiciadas por la Unión Europea y fomentadas, mediante normativas específicas y ayudas sustanciales en cada uno de los países miembros, a fin de reforzar la utilización de los biocarburantes, como energía alternativa a los combustibles fósiles, debido a las ventajas medioambientales y sociopolíticas que conllevan. Para ello se ha empezado realizando un estudio del sector y de su funcionamiento así como de la evolución reciente del mercado tanto en Europa como en España. Posteriormente se ha modelizado una planta de biodiesel tipo desde las primeras fases de su construcción hasta su puesta en funcionamiento, para, a continuación analizar su desarrollo haciendo especial hincapié en la evolución de las principales variables económicas anteriormente estudiadas que han llevado finalmente a tener que cerrarla por falta de rentabilidad. El proceso de producción del biodiésel desde aceites vegetales y grasas animales mantiene un fuerte crecimiento en los mercados de la Unión Europea al igual que en Estados Unidos y Canadá. La producción de biodiésel se ha incrementado rápidamente en los últimos años, ya que es una alternativa renovable a los carburantes, como el petróleo o el diésel. La producción por trasesterificación de aceites vegetales y grasas animales, dan al biodiésel una densidad, un punto de encendido, viscosidad, estabilidad a la oxidación similares al diésel. Estas propiedades permiten a la mezcla de biodiésel poder usarlo en motores convencionales sin necesidad de grandes modificaciones. El objetivo fundamental de este proyecto es, dentro de un entorno económico hostil, explicar el posible porqué de la situación de las plantas de biodiésel en España, haciendo un análisis de la viabilidad económico – financiera de una planta de producción de biodiésel. La instalación de la que parte el presente proyecto es la de una planta, situada en la provincia de Jaén, con una capacidad de producción de 100 000 t/año, con una previsión de funcionamiento continua y con una vida útil estimada de 15 años. Una vez finalizado el estudio económico, se ha valorado el impacto del mercado en el funcionamiento de la planta, tanto a nivel internacional debido a la competencia desleal, como nacional, debido a las ayudas en los cultivos. Se deduce que la rentabilidad de una planta de biodiésel es relativamente positiva pero viene dada por un gran número de variables internas y externas que hacen un negocio inestable y poco rentable. ABSTRACT It explains the possible reasons that have forced several biodiesel plants in Spain to close in spite of being sponsored by the European Union and promoted by specific regulations and substantial aid in each of the member countries to strengthen the use of biofuels as alternative energy to fossil fuels because of the environmental and sociopolitical involving VII For this we have begun a study of the sector and its operation as well as the recent market developments in Europe and in Spain. Later was modeled biodiesel plant type from the early stages of construction to commissioning, to then analyze its development with particular emphasis on the evolution of the main economic variables that have been previously studied eventually have to close by unprofitability. The processes and production of biodiesel (methyl ester) from vegetable oil and animal fat feedstocks remain a strong growth market in the European Union as well as the United States and Canada. Biodiesel production has increased rapidly in this last years as producers sought a renewable alternative to petroleum fuel. Produced by the trans-esterification of vegetable oils and animal fats, biodiesel has similar density, flash point, viscosity, oxidation stability to petroleum diesel. These similarities enable biodiesel blends to be used in conventional diesel engines without significant modifications. This proyect gives an overview of current developments with regard to biodiesel technology, the Spain biofuel market, and national biofuel policies, looking at closely the economic-financial feasibility of a biodiesel production plant. The installation, situated at Linares (Jaén), has a production capability of 100 000 t/year. The operation estimated is constant and with a product life of 15 years. Finished the part destined to the economic view of this project, it has been considered the adverse effects on the overall performance and the financial situation of the industry. It follows form the study that biodiesel plant´s profitability is relatively high, but it is given by a large numbers of variables, internals and externals, which have made an unviable and unsustainable business.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes an attractive method to make biodiesel from soybean soapstock (SS). A novel recovery technology of acid oil (AO) from SS has been developed with only sulfuric acid solution under the ambient temperature (25 +/- 2 degrees C). After drying, AO contained 50.0% FFA, 15.5% TAG 6.9% DAG 3.1% MAG 0.8% water and other inert materials. The recovery yield of AO was about 97% (w/w) based on the total fatty acids of the SS. The acid oil could be directly converted into biodiesel at 95 degrees C in a pressurized reactor within 5 hours. Optimal esterification conditions were determined to be a weight ratio of 1 : 1.5 : 0.1 of AO/methanol/sulfuric acid. Higher reaction temperature helps to shorten the reaction time and requires less catalyst and methanol. Ester content of the biodiesel derived from AO through one-step acid catalyzed reaction is around 92%. After distillation, the purity of the biodiesel produced from AO is 97.6% which meets the Biodiesel Specification of Korea. The yield of purified biodiesel was 94% (w/w) based on the total fatty acids of the soapstock.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study undertook a physico-chemical characterisation of particle emissions from a single compression ignition engine operated at one test mode with 3 biodiesel fuels made from 3 different feedstocks (i.e. soy, tallow and canola) at 4 different blend percentages (20%, 40%, 60% and 80%) to gain insights into their particle-related health effects. Particle physical properties were inferred by measuring particle number size distributions both with and without heating within a thermodenuder (TD) and also by measuring particulate matter (PM) emission factors with an aerodynamic diameter less than 10 μm (PM10). The chemical properties of particulates were investigated by measuring particle and vapour phase Polycyclic Aromatic Hydrocarbons (PAHs) and also Reactive Oxygen Species (ROS) concentrations. The particle number size distributions showed strong dependency on feedstock and blend percentage with some fuel types showing increased particle number emissions, whilst others showed particle number reductions. In addition, the median particle diameter decreased as the blend percentage was increased. Particle and vapour phase PAHs were generally reduced with biodiesel, with the results being relatively independent of the blend percentage. The ROS concentrations increased monotonically with biodiesel blend percentage, but did not exhibit strong feedstock variability. Furthermore, the ROS concentrations correlated quite well with the organic volume percentage of particles – a quantity which increased with increasing blend percentage. At higher blend percentages, the particle surface area was significantly reduced, but the particles were internally mixed with a greater organic volume percentage (containing ROS) which has implications for using surface area as a regulatory metric for diesel particulate matter (DPM) emissions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Beauty Leaf tree (Calophyllum inophyllum) is a potential source of non-edible vegetable oil for producing future generation biodiesel because of its ability to grow in a wide range of climate conditions, easy cultivation, high fruit production rate, and the high oil content in the seed. This plant naturally occurs in the coastal areas of Queensland and the Northern Territory in Australia, and is also widespread in south-east Asia, India and Sri Lanka. Although Beauty Leaf is traditionally used as a source of timber and orientation plant, its potential as a source of second generation biodiesel is yet to be exploited. In this study, the extraction process from the Beauty Leaf oil seed has been optimised in terms of seed preparation, moisture content and oil extraction methods. The two methods that have been considered to extract oil from the seed kernel are mechanical oil extraction using an electric powered screw press, and chemical oil extraction using n-hexane as an oil solvent. The study found that seed preparation has a significant impact on oil yields, especially in the screw press extraction method. Kernels prepared to 15% moisture content provided the highest oil yields for both extraction methods. Mechanical extraction using the screw press can produce oil from correctly prepared product at a low cost, however overall this method is ineffective with relatively low oil yields. Chemical extraction was found to be a very effective method for oil extraction for its consistence performance and high oil yield, but cost of production was relatively higher due to the high cost of solvent. However, a solvent recycle system can be implemented to reduce the production cost of Beauty Leaf biodiesel. The findings of this study are expected to serve as the basis from which industrial scale biodiesel production from Beauty Leaf can be made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past few decades, biodiesel produced from oilseed crops and animal fat is receiving much attention as a renewable and sustainable alternative for automobile engine fuels, and particularly petroleum diesel. However, current biodiesel production is heavily dependent on edible oil feedstocks which are unlikely to be sustainable in the longer term due to the rising food prices and the concerns about automobile engine durability. Therefore, there is an urgent need for researchers to identify and develop sustainable biodiesel feedstocks which overcome the disadvantages of current ones. On the other hand, artificial neural network (ANN) modeling has been successfully used in recent years to gain new knowledge in various disciplines. The main goal of this article is to review recent literatures and assess the state of the art on the use of ANN as a modeling tool for future generation biodiesel feedstocks. Biodiesel feedstocks, production processes, chemical compositions, standards, physio-chemical properties and in-use performance are discussed. Limitations of current biodiesel feedstocks over future generation biodiesel feedstock have been identified. The application of ANN in modeling key biodiesel quality parameters and combustion performance in automobile engines is also discussed. This review has determined that ANN modeling has a high potential to contribute to the development of renewable energy systems by accelerating biodiesel research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Generally, the magnitude of pollutant emissions from diesel engines running on biodiesel fuel is ultimately coupled to the structure of respective molecules that constitutes the fuel. Previous studies demonstrated the relationship between organic fraction of PM and its oxidative potential. Herein, emissions from a diesel engine running on different biofuels were analysed in more detail to explore the role different organic fractions play in the measured oxidative potential. In this work, a more detailed chemical analysis of biofuel PM was undertaken using a compact Time of Flight Aerosol Mass Spectrometer (c-ToF AMS). This enabled a better identification of the different organic fractions that contribute to the overall measured oxidative potentials. The concentration of reactive oxygen species (ROS) was measured using a profluorescent nitroxide molecular probe 9-(1,1,3,3-tetramethylisoindolin-2-yloxyl-5-ethynyl)-10-(phenylethynyl)anthracene (BPEAnit). Therefore the oxidative potential of the PM, measured through the ROS content, although proportional to the total organic content in certain cases shows a much higher correlation with the oxygenated organic fraction as measured by the c-ToF AMS. This highlights the importance of knowing the surface chemistry of particles for assessing their health impacts. It also sheds light onto new aspects of particulate emissions that should be taken into account when establishing relevant metrics for assessing health implications of replacing diesel with alternative fuels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The issue of particle emissions from diesel engines is still a matter of concern due its deleterious effects both on human health and environment(Ristovski et al., 2012). Recently, International Agency for Research on Cancer (IARC) inclusion of diesel engine exhaust particles as carcinogenic to human health added a new margin on it. Apart from the use of after treatment technology, biodiesel is also considered as potential way to reduce particle emission alongside with other emissions(Xue, Grift, & Hansen, 2011). Global biodiesel production is still reasonably small compared to its counterpart fossil diesel, but even this small amount comes from a wide variety of feed stocks. Contrary to fossil diesel, the important physicochemical properties of biodiesel vary among different feed stocks(Hoekman, Broch, Robbins, Ceniceros, & Natarajan, 2012).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is a comprehensive study of microalgae biodiesel for the compression ignition engine. It examines microalgae growing conditions, the extraction process and physiochemical properties with a wide range of microalgae species. It also evaluates microalgae biodiesel with regards to engine performance and emission characteristics and explains the difficulties and potentiality of microalgae as a biodiesel. In doing so, an extensive analysis of different extraction methods and engine testing was conducted and a comprehensive study on microalgae biodiesel is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Conventional biodiesel production relies on trans-esterification of lipids extracted from vegetable crops. However, the use of valuable vegetable food stocks as raw material for biodiesel production makes it an unfeasibly expensive process. Used cooking oil is a finite resource and requires extra downstream processing, which affects the amount of biodiesel that can be produced and the economics of the process. Lipids extracted from microalgae are considered an alternative raw material for biodiesel production. This is primarily due to the fast growth rate of these species in a simple aquaculture environment. However, the dilute nature of microalgae culture puts a huge economic burden on the dewatering process especially on an industrial scale. This current study explores the performance and economic viability of chemical flocculation and tangential flow filtration (TFF) for the dewatering of Tetraselmis suecicamicroalgae culture. Results: Results show that TFF concentrates the microalgae feedstock up to 148 times by consuming 2.06 kWh m-3 of energy while flocculation consumes 14.81 kWhm-3 to concentrate the microalgae up to 357 times. Economic evaluation demonstrates that even though TFF has higher initial capital investment than polymer flocculation, the payback period for TFF at the upper extreme ofmicroalgae revenue is ∼1.5 years while that of flocculation is ∼3 years. Conclusion: These results illustrate that improved dewatering levels can be achieved more economically by employing TFF. The performances of these two techniques are also compared with other dewatering techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents a comprehensive study on the influences of biodiesel chemical composition and physical properties on diesel engine exhaust particle emissions. It examines biodiesels from several feedstocks having wide variations in their chemical composition (carbon chain length, unsaturation and oxygen content) and physical properties (density, viscosity, surface tension, boiling point etc.), and evaluates their influence on exhaust particle emissions. The outcome of this thesis is significant since it reveals the importance of regulating biodiesels chemical composition in order to ensure lowest possible emissions with better overall performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work explores the potential of Australian native plants as a source of second-generation biodiesel for internal combustion engines application. Biodiesels were evaluated from a number of non-edible oil seeds which are grow naturally in Queensland, Australia. The quality of the produced biodiesels has been investigated by several experimental and numerical methods. The research methodology and numerical model developed in this study can be used for a broad range of biodiesel feedstocks and for the future development of renewable native biodiesel in Australia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis improves our insight towards the effects of using biodiesels on the particulate matter emission of diesel engines and contributes to our understanding of their potential adverse health effects. The novelty of this project is the use of biodiesel fuel with controlled chemical composition that enables us to relate changes of physiochemical properties of particles to specific properties of the biodiesel. For the first time, the possibility of a correlation of the volatility and the Reactive Oxygen Species concentration of the particles is investigated versus the saturation, oxygen content and carbon chain length of the fuel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric aging processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.