873 resultados para Biodiesel de girassol. Resíduos. Análise térmica
Resumo:
The worldwide concern regarding the use of sustainable energy and preserving the environment are determining factors in the search for resources and alternative sources of energy and therefore fuel less aggressive nature. In response to these difficulties Biodiesel has emerged as a good solution because it is produced from renewable sources, produces burns cleaner and is easily reproducible. This work was synthesized with biodiesel oil, sunflower via homogeneous catalysis in the presence of KOH, with and without the use of BHT and subsequently added to the blends BX (a proportion of biodiesel X = 5, 10, 15 and 20 %). Atmospheric distillation of the analysis, performed in blends with and without BHT were collected residue generated by each sample and performed a study heat from the thermogravimetric analysis at a heating rate of 10 °C*min-1, nitrogen atmosphere and heating to 600 °C. According to the specifications of Resolution N 7/2008 for biodiesel, it was found that the synthesized material was in accordance with the specifications. For blends showed that the samples are in accordance with the Resolution of ANP N 42/2009. From the TG / DTG curves of the samples of biodiesel, blends and waste can be seen that these show a single loss of thermal decomposition concerning constituents present in each sample. The blends without BHT with ratios of 5%, 10% and 15% biodiesel showed a lower amount of waste (1,07%; 1,09% e 1,10%) to mineral diesel (1,15%). Therefore, it is concluded that the addition of biodiesel with diesel mineral can improve some physico-chemical parameters, but also, depending on the added amount, decreasing the amount of waste generated. This fact is of great importance because the carbonaceous residue can cause problems in mechanical equipment and parts for vehicles, causing more frequent maintenance, and this is not desirable
Resumo:
The worldwide concern regarding the use of sustainable energy and preserving the environment are determining factors in the search for resources and alternative sources of energy and therefore fuel less aggressive nature. In response to these difficulties Biodiesel has emerged as a good solution because it is produced from renewable sources, produces burns cleaner and is easily reproducible. This work was synthesized with biodiesel oil, sunflower via homogeneous catalysis in the presence of KOH, with and without the use of BHT and subsequently added to the blends BX (a proportion of biodiesel X = 5, 10, 15 and 20 %). Atmospheric distillation of the analysis, performed in blends with and without BHT were collected residue generated by each sample and performed a study heat from the thermogravimetric analysis at a heating rate of 10 °C*min-1, nitrogen atmosphere and heating to 600 °C. According to the specifications of Resolution N 7/2008 for biodiesel, it was found that the synthesized material was in accordance with the specifications. For blends showed that the samples are in accordance with the Resolution of ANP N 42/2009. From the TG / DTG curves of the samples of biodiesel, blends and waste can be seen that these show a single loss of thermal decomposition concerning constituents present in each sample. The blends without BHT with ratios of 5%, 10% and 15% biodiesel showed a lower amount of waste (1,07%; 1,09% e 1,10%) to mineral diesel (1,15%). Therefore, it is concluded that the addition of biodiesel with diesel mineral can improve some physico-chemical parameters, but also, depending on the added amount, decreasing the amount of waste generated. This fact is of great importance because the carbonaceous residue can cause problems in mechanical equipment and parts for vehicles, causing more frequent maintenance, and this is not desirable
Resumo:
Atualmente grande parte dos resíduos descartados rotineiramente no Brasil é composta por material plástico como, por exemplo, o polietileno de alta densidade (PEAD), o qual é muito comum no lixo doméstico. Nesta Dissertação, embalagens de PEAD pós-consumo foram coletadas e moídas. Após processamento em extrusora, o material definido como PEAD reciclado (mistura de embalagens brancas, marfins e incolores) foi injetado e as propriedades mecânicas foram avaliadas e comparadas com uma amostra de PEAD comercial (HD7600U). A análise térmica através da calorimetria exploratória diferencial (DSC), em conjunto com a análise estatística dos resultados experimentais, também foi conduzida. Em relação à resistência à tração, a diferença entre as amostras de PEAD reciclado e PEAD comercial foram tão pouco expressivas que, dentro das condições experimentais adotadas, se pode afirmar que o material reciclado é equivalente ao comercial.Por sua vez, os modelos cinéticos aplicados na análise térmica revelaram quea amostra de PEAD comercial demonstra um processo de nucleação e crescimento dos cristais mais homogêneo e simples, embora a energia de ativação seja consideravelmente maior do que o das demais amostras de PEAD.
Resumo:
The use of oxygen to enrich the combustion air can be an attractive technique to increase capacity of an incinerator originally designed to operate with air. If incinerator parameters such as operation temperature, turbulence level and residence time are fixed for a certain fuel supply rate, it is possible to increase the residue consumption rate using enriched air. This paper presents the thermal analysis for operation with enriched air of an aqueous residue experimental incinerator. The auxiliary fuel was diesel oil. The theoretical results showed that there is a considerable increase in the incineration ratio up to approximately 50 % of O 2 in the oxidiser. The tendency was confirmed experimentally. Thermal analysis was demonstrated to be an important tool to predict possible incinerator capacity increase.
Resumo:
Os materiais ferroelétricos têm sido utilizados em muitas áreas da tecnologia e da ciência, pois possuem um grande número de aplicações, como: sensores; transdutores; capacitores; dispositivos ópticos; dentre outras. A busca por novos materiais cerâmicos ferroelétricos tem sido grande. Um dos materiais cerâmicos ferroelétricos mais estudados é o titanato de bário (BT). São vários os métodos de produção e caracterização do titanato de bário. Neste trabalho, pós cerâmicos de titanato de bário foram obtidos por reação do estado sólido a partir de misturas reacionais calcinadas em diferentes temperaturas entre 400C e 900C. Foram três as misturas reacionais: não dopadas; dopadas com 1%; e dopadas com 5% de dióxido de cério (CeO2). A identificação da formação do BT, nos pós cerâmicos produzidos, foi feita a partir de três técnicas de caracterização: difração de raios X (DRX); espectroscopia fotoacústica (PAS); e técnicas de análise térmica. Com a técnica DRX, difratogramas mostraram que a plena formação do titanato de bário ocorreu a partir da temperatura de calcinação de 700C. Para a amostra não dopada com cério e calcinada a 800C, houve deslocamento de todos os picos de difração. Nas amostras dopadas com dióxido de cério houve deslocamento de todos os picos de difração, em relação as amostras não dopadas. Observou-se também que nas amostras dopadas com 5% de CeO2, e calcinadas a 700C e 800C, resíduos de dióxido de cério foram observados nos difratogramas. Com a técnica PAS, espectros de absorção foram obtidos. Foi possível observar uma grande diferença de absorção da amostra calcinada a 600 e 630C, indicando a formação do titanato de bário a partir da temperatura de 630C, nas amostras sem a dopagem dióxido de cério. Houve um alargamento nas bandas de absorção a partir da temperatura de 600C, quando o dióxido de cério entrou na matriz. Foi também possível determinar as energias de band-gap das amostras utilizando o método de Tauc. Com as técnicas de análise térmica, em especial através da técnica termogravimétrica (TG/DTG), foi comprovado que até 400C não havia formação de titanato de bário. Visto que nesta temperatura de calcinação houve a maior perda de massa durante a rampa de aquecimento. O início da formação do titanato de bário foi observado a partir da temperatura de calcinação de 500C, assim como nas técnicas DRX e PAS. Portanto, com os resultados apresentados, foi demonstrada a identificação da formação do titanato de bário nas misturas reacionais calcinadas, com auxílio das potencialidades das três técnicas utilizadas.
Resumo:
Space Science was built using a composite made of plaster, EPS, shredded tires, cement and water. Studies were conducted to thermal and mechanical resistance. Inside the mold EPS plates were placed in order to obtain a higher thermal resistance on the wall constructed, as well as to give it an end environmentally friendly in view of both the tire and the EPS occupy a large space in landfills and year need to be degraded when released into the environment. Compression tests were performed according to ABNT blocks to seal, measurements of the temperature variation in the external and internal walls using a laser thermometer and check the temperature of the indoor environment using a thermocouple attached to a digital thermometer. The experiments demonstrated the heat provided by the composite values from the temperature difference between the internal and external surfaces on the walls, reaching levels of 12.4 ° C and room temperature in the interior space of the Science of 33.3 ° C, remaining within the zone thermal comfort for hot climate countries. It was also demonstrated the proper mechanical strength of such a composite for sealing walls. The proposed use of the composite can contribute to reducing the extreme housing shortage in our country, producing popular homes at low cost and with little time to work
Resumo:
It is known that the head office world energetics is leaning in the fossil fuels. However, the world panorama is changing quickly, for linked reasons to three of the humanity's great concerns in that century beginning: environment, global economy and energy. The biodiesel production is based on the transesterificação of vegetable oils or animal fats, using catalysts homogeneous or heterogeneous. The process of heterogeneous transesterificação presents lower conversions in comparison with the homogeneous, however, it doesn't present corrosion problems and it reduces to the occurrence of parallel reactions as saponification. In this sense, this work has for purpose the synthesis of a heterogeneous catalyst, KNO3/Al2O3, that soon afterwards was used in the reaction of transesterificação of the oil of the Helianthus annuus L. (sunflower). The solid materials (it supports and catalyst) they were analyzed by diffraction of ray-X (XRD) and electronic microscope of sweeping (MEV). After the analysis of Al2O3, a structure monophase amorphous tetragonal was verified, with characteristic patterns of that material, what could not be visualized in the difratograma of the catalyst. The biodiesel obtained with 4% wt. of KNO3/Al2O3 it was what obtained a better cinematic viscosity 8,3 mm2/s, comparing with the norms of ANP, and it also presented the best conversion tax in ethyl ésteres, in accordance with the quantitative measure starting from TG, that was of 60%. While the biodiesel with 6% wt. and with 8% wt. of KNO3/Al2O3 it was it that no transesterificou, because it was observed in the analysis termogravimétrica of those two materials, a single thermal event, that it corresponds the decomposition or volatilization of the triglycerides
Resumo:
Biodiesel is a fuel made up by mono-alkyl-esters of long chain fatty acids, derived from vegetable oils or animal fat. This fuel can be used in compression ignition engines for automotive propulsion or energy generation, as a partial or total substitute of fossil diesel fuel. Biodiesel can be processed from different mechanisms. Transesterification is the most common process for obtaining biodiesel, in which an ester compound reacts with an alcohol to form a new ester and a new alcohol. These reactions are normally catalyzed by the addition of an acid or a base. Initially sunflower, castor and soybean oil physicochemical properties are determined according to standard test methods, to evaluate if they had favorable conditions for use as raw material in the transesterification reaction. Sunflower, castor and soybean biodiesel were obtained by the methylic transesterification route in the presence of KOH and presented a yield above 93% m/m. The sunflower/castor and soybean/castor blends were studied with the aim of evaluating the thermal and oxidative stability of the biofuels. The biodiesel and blends were characterized by acid value, iodine value, density, flash point, sulfur content, and content of methanol and esters by gas chromatography (GC). Also studies of thermal and oxidative stability by Thermogravimetry (TG), Differential Scanning Calorimetry High Pressure (P-DSC) and dynamic method exothermic and Rancimat were carried out. Biodiesel sunflower and soybean are presented according to the specifications established by the Resolution ANP no 7/2008. Biodiesel from castor oil, as expected, showed a high density and kinematic viscosity. For the blends studied, the concentration of castor biodiesel to increased the density, kinematic viscosity and flash point. The addition of castor biodiesel as antioxidant in sunflower and soybean biodiesels is promising, for a significant improvement in resistance to autoxidation and therefore on its oxidative stability. The blends showed that compliance with the requirements of the ANP have been included in the range of 20-40%. This form may be used as a partial substitute of fossil diesel
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The recent insertion of biodiesel derived from oily vegetables in the Brazilian energetic matrix calls for the study of some aspects that belong to it. The analysis of the carbonized energetic pattern concerns the paradigm of economic development that is constitutionally enshrined sustainable development which make environmental protection compatible with the needs of the economic rationality. This text is structured according to the ideas of modern hermeneutic that sees substantial value in the principles capable of create a harmonious relationship between law and society. The study of the constitutional principles to conduct a legal analysis about the National Program for Production and Use of Biodiesel - PNPB. The aim of the research is the study of PNPB ahead with the constitutional principles governing the economic order. To achieve this end we studied the sustainable development as a constitutional principle. We start with the notion that the thematic principles, and fundamental to understanding the dimension of sustainable development institute, since its concept is closely related to the applications of the principles enshrined in virtually all the constitutional order of the Western world. Then this was the National Energy Policy, initiating the approach by guiding principles of the National Energy Policy to develop the theme of public policy in the energy sector. Therefore, we studied the National Program of Biodiesel Production and Use - PNPB. From a technical introduction to the concept of biodiesel and a brief historical background, analyzing their advantages compared to fossil fuels predominantly used. Then it became a regulatory overview of the Brazilian legislation on the subject, central to understanding the plans and objectives pursued by the Brazilian government with encouraging the production of biodiesel. Finally discussed the tax incentives for production and use of biodiesel in Brazil. From the idea of federalism, characterized the tax as an instrument of state intervention in the economy. And finally it brought the tax incentives of Law No. 11.116/2005 in the face of the constitutional principles of economy and tax, and tax incentives from projects related to the Kyoto Protocol
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dez amostras de cálculos renais foram estudadas por Análise Elementar de CHN (EA), Espectroscopia de Absorção no Infravermelho (IV) e Difração de raios X pelo método de Pó (XRD). O comportamento térmico das amostras foi estudado por Termogravimetria/Termogravimetria Derivada (TG/DTG) e por Calorimetria Exploratória Diferencial (DSC). Os resultados de EA, Espectroscopia de Absorção IV e XRD mostraram a presença de estruvita [NH4Mg(PO4).6H2O], apatita, oxalato de cálcio monohidratado e oxalato de cálcio dihidratado. As curvas TG e DSC permitiram classificar as amostras em dois grupos diferentes: Grupo I mostrando comportamento térmico típico de estruvita e Grupo II apresentando um perfil termoanalítico característico de mistura de oxalatos.
Resumo:
Sparfloxacin, a third-generation fluoroquinolone, is a potent antibacterial agent against a wide range of Gram-positive and Gram-negative organisms, for example Streptococcus pneumonias, Staphylococcus aureus (including methicillin-resistant strains), Legionella spp., Mycoplasma spp., Chlamydia spp. and Mycobacterium spp. This compound has been submitted to thermal analysis and the results are presented here. The DSC curve of sparfloxacin has an endothermic peak that indicates a melting point at 276.5 °C. The DTA curve of the sample in synthetic air shows two exothermic peaks, at 341.6 and 579.2 °C, attributed to compound decomposition. In the TG curve, the loss of mass can be seen to occur in two steps between 285.5 and 645.3 °C. The DTA curve obtained in a nitrogen atmosphere shows an exothermic peak, with decomposition of sparfloxacin at 340.0 °C; from the corresponding TG plot, the loss of mass starts at 254.4 °C.