947 resultados para Biodegradable plastic


Relevância:

100.00% 100.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

利用聚合酶链式反应(PCR)技术从Alcaligenes eutrophus H16染色体DNA中扩增并克隆了调控聚-3-羟基丁酸(poly-3-hydroxy-butyrate,PHB)生物合成的两个关键酶基因:依赖NADPH的乙酰乙酰CoA还原酶基因(phbB)和PHB合成酶基因(phbC)。限制性内切酶图谱和核苷酸序列分析证实了克隆结果,并表明克隆的基因与国外所报道的有很高的同源性。经过基因拼接,构建了块茎特异性表达的高等植物表达载体pPSAGB(嵌合phbB)、pBIBGC(嵌合phbC)和pPSAGCB(嵌合phbB和phbC)。并以试管薯(microtuber)为外植体经Agrobacterium介导转化了虎头、京丰、Bintje、Favorita、高原4号和88-5共6个马铃薯品种,获得49个株系。经PCR检测导入phbB的株系共有44个,对其中30个株系进行DNA dot blot分析,结果表明phbC导入呈阳性的株系有20个。深入的鉴定工作还在进行中。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

聚-β-羟基链烷酸(PHA)是许多微生物作为碳源、能源的一类贮藏性聚酯,具有广泛的应用价值。该聚酯可被微生物完全降解且有与塑料相似的性质,因而研究并提高PHA在植物中的合成为解决环境污染提供了新的解决途径。 聚-β-羟基于酸酯(PHB)是研究的最早、研究的最清楚的一种PHA。用聚合酶链式反应扩增并克隆了真养产碱杆菌(Alcaligenes eutrophus)中合成PHB的一个关键酶——3-酮硫裂解酶基因phbA。DNA序列分析表明所克隆的基因与国外报道序列同源性很高,只有一个碱基对的区别。为了检测该基因的功能及导肽的定位效率,构建了带有导肽基因的组成型表达载体,由根癌农杆菌介导转化烟草(Nicotiana tabacum cv. Wisconsin 38)得到转基因植株。蛋白质电泳结果表明导肽可以将外源蛋白定位于质体,phbA基因能翻译成相应大小的蛋白。酶活性分析证实了转基因烟草中phbA编码的3-酮硫裂解酶可以催化乙酰-CoA合成乙酰乙酰-CoA。 将携有导肽序列的phbC(编码PHB合酶)和phbB(编码乙酰乙酰-CoA还原酶)连入pBIB-HYG得到组成型表达载体pZCB,用冻融法转入根癌农杆菌,介导转化烟草。烟草为已获得的具有卡那霉素抗性整合并表达phbA的转基因烟草。通过二次转化将携有潮霉素抗性的phbB基因和phbC基因导入已整合phbA的烟草,各基因均由质体导肽控制,最后得到整合PHB合成的三个酶基因的转基因烟草。转基因烟草经PCR、PCR-Southern检测,初步确定整合phbB和phbC烟草植株。以气相色谱初步分析,转基因烟草中PHB的含量可达鲜重的0.233%。 结果表明phbB和phbC基因可以在真核表达系统中编码相应的蛋白。通过色素分析、荧光动力学等手段分析了PHB在叶绿体中的累积对其功能的影响。 为了提高底物乙酰-CoA的供应能力及减少惰性聚酯对植物体的伤害,分离了种子特异性启动子和质体导肽序列,利用忆经克隆的合成PHB的三个关键酶基因,通过一系列DNA重组,分别构建了含有种子特异性启动子的嵌合phbC、phbB的二价表达载体pSCB及嵌合phbC、phbA、phbB的三价表达载体pSCAB,并由导肽将基因表达产物定位于质体。经根癌农杆菌介导转化油菜(Brassica napus L.) H165,获得转基因油菜植株,并进行了PCR、Southern blot及RT-PCR-DNA杂交等分检测。结果表明,三基因已经分别整合到相应的转基因油菜中,并已在转录水平表达。同时转化了油菜不育系、恢复系和保持系,获得批量转化株,并移入温室栽培。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mulch materials of different origins have been introduced into the agricultural sector in recent years alternatively to the standard polyethylene due to its environmental impact. This study aimed to evaluate the multivariate response of mulch materials over three consecutive years in a processing tomato (Solanum lycopersicon L.) crop in Central Spain. Two biodegradable plastic mulches (BD1, BD2), one oxo-biodegradable material (OB), two types of paper (PP1, PP2), and one barley straw cover (BS) were compared using two control treatments (standard black polyethylene [PE] and manual weed control [MW]). A total of 17 variables relating to yield, fruit quality, and weed control were investigated. Several multivariate statistical techniques were applied, including principal component analysis, cluster analysis, and discriminant analysis. A group of mulch materials comprised of OB and BD2 was found to be comparable to black polyethylene regarding all the variables considered. The weed control variables were found to be an important source of discrimination. The two paper mulches tested did not share the same treatment group membership in any case: PP2 presented a multivariate response more similar to the biodegradable plastics, while PP1 was more similar to BS and MW. Based on our multivariate approach, the materials OB and BD2 can be used as an effective, more environmentally friendly alternative to polyethylene mulches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increasing interests in the use of starch as biodegradable plastic materials demand, amongst others, accurate information on thermal properties of starch systems particularly in the processing of thermoplastic starch (TPS), where plasticisers (water and glycerol) are added. The specific heat capacity of starch-water-glycerol mixtures was determined within a temperature range of 40-120degreesC. A modulated temperature differential scanning calorimeter (MTDSC) was employed and regression equations were obtained to predict the specific heat capacity as a function of temperature, water and glycerol content for four maize starches of differing amylose content (0 - 85%). Generally, temperature and water content are directly proportional to the specific heat capacity of the systems, but the influence of glycerol content on the thermal property varied according to the starch type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents the fabrication of biodegradable polymer blends and composites with the assistance of ionic liquids. The work included preparation and characterization of cellulose/PCL blend films, cellulose/ PCL-PDMS-PCL blend films, cellulose/ PVAL blend films and cellulose/clay composite films. An efficient and feasible approach of reducing plastic pollution was developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research work develops new methods to produce biodegradable starch-based trays for the purpose of replacing expanded polystyrene in the food packaging market. The starch based biopolymers present several drawbacks like poor mechanical properties and very high density. In order to overcome these drawbacks two research lines have been set up: blending thermoplastic starch with biobased reinforcements from agricultural wastes like barley straw and grape wastes, and testing the foamability of these materials with a Microwave-foaming method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermosetting blends of a biodegradable poly(ethylene glycol)-type epoxy resin (PEG-ER) and poly(epsilon-caprolactone) (PCL) were prepared via an in situ curing reaction of poly(ethylene glycol) diglycidyl ether (PEGDGE) and maleic anhydride (MAH) in the presence of PCL. The miscibility, phase behavior, crystallization, and morphology of these blends were investigated. The uncured PCL/PEGDGE blends were miscible, mainly because of the entropic contribution, as the molecular weight of PEGDGE was very low. The crystallization and melting behavior of both PCL and the poly(ethylene glycol) (PEG) segment of PEGDGE were less affected in the uncured PCL/PEGDGE blends because of the very close glass-transition temperatures of PCL and PEGDGE. However, the cured PCL/PEG-ER blends were immiscible and exhibited two separate glass transitions, as revealed by differential scanning calorimetry and dynamic mechanical analysis. There existed two phases in the cured PCL/PEG-ER blends, that is, a PCL-rich phase and a PEG-ER crosslinked phase composed of an MAH-cured PEGDGE network. The crystallization of PCL was slightly enhanced in the cured blends because of the phase-separated nature; meanwhile, the PEG segment was highly restricted in the crosslinked network and was noncrystallizable in the cured blends. The phase structure and morphology of the cured PCL/PEG-ER blends were examined with scanning electron microscopy; a variety of phase morphologies were observed that depended on the blend composition. (C) 2004 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymer processing experiments have been conducted with a twin screw extruder. Different formulations of starch-based nanocomposites are being tested in a pilot scale film blowing tower. The physical properties of different starch-based films have been examined with thermal and mechanical analysis and X-ray diffraction. The results show that the addition of organoclay significantly improves both the processing and tensile properties over the original starch blends. The mechanical and thermal properties of the blends are also sensitive to the scale the clay particles are dispersed.