2 resultados para Biocomputation
Resumo:
Protein molecular motors, which are natural nano-machines that convert the chemical energy into mechanical work for cellular motion, muscle contraction and cell division, have been integrated in the last decade in primitive nanodevices based on the motility of nano-biological objects in micro- and nano-fabricated structures. However, the motility of microorganisms powered by molecular motors has not been similarly exploited. Moreover, among the proposed devices based on molecular motors, i.e., nanosensors, nano-mechanical devices and nano-imaging devices, biocomputation devices are conspicuously missing. The present contribution discusses, based on the present state of the art nano- and micro-fabrication, the comparative advantages and disadvantages of using nano- and micro-biological objects in future computation devices. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Biological systems are typically complex and adaptive, involving large numbers of entities, or organisms, and many-layered interactions between these. System behaviour evolves over time, and typically benefits from previous experience by retaining memory of previous events. Given the dynamic nature of these phenomena, it is non-trivial to provide a comprehensive description of complex adaptive systems and, in particular, to define the importance and contribution of low-level unsupervised interactions to the overall evolution process. In this chapter, the authors focus on the application of the agent-based paradigm in the context of the immune response to HIV. Explicit implementation of lymph nodes and the associated lymph network, including lymphatic chain structure, is a key objective, and requires parallelisation of the model. Steps taken towards an optimal communication strategy are detailed.