1000 resultados para Biobased composites


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tannin-phenolic polymers prepared using tannin, a macromolecule obtained from natural sources, were used in the preparation of composites reinforced with coir fibers. The composites based on tannin-phenolic polymers (50% (w/w) of tannin as substitute of the phenol) were prepared using the coir fibers as reinforcement (30-70% (w/w), 3.0-6.0 cm, randomly distributed). The Izod impact strength of the composites showed an improvement in this property due to the incorporation of coir fibers in the tannin-phenolic matrices. The SEM images showed excellent adhesion at the fiber/matrix interface. The coir fiber had bundles regularly spaced, which enhanced the diffusion of the resin into the fiber. In addition, the high lignin content of this fiber results in a high concentration of aromatic rings, which increased the compatibility with the matrix. The values of the diffusion coefficient of water, determined using Fick`s laws, show that there was no correlation between the fiber percentage and the water diffusion. The DMTA curves showed that the storage moduli of the composites reinforced with coir fibers were considerably higher than that of the thermoset, and the increase in the proportion of fibers led to a proportional increase in the storage moduli of these materials. The biobased composites obtained have potential for non-structural applications, such as in the internal parts of automotives vehicles. To our knowledge, this is the first study on this kind of biobased composites. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, the main focus was the characterization and application of the by-product lignin isolated through an industrial organosolv acid hydrolysis process from sugarcane bagasse, aiming at the production of bioethanol. The sugarcane lignin was characterized and used to prepare phenolic-type resins. The analysis confirmed that the industrial sugarcane lignin is of HGS type, with a high proportion of the less substituted aromatic ring p-hydroxyphenyl units, which favors further reaction with formaldehyde. The lignin-formaldehyde resins were used to produce biobased composites reinforced with different proportions of randomly distributed sisal fibers. The presence of lignin moieties in both the fiber and matrix increases their mutual affinity, as confirmed by SEM images, which showed good adhesion at the biocomposite fiber/matrix interface. This in turn allowed good load transference from the matrix to the fiber, leading to biobased composites with good impact strength (near 500 J m(-1) for a 40 wt% sisal fiber-reinforced composite). The study demonstrates that sugarcane bagasse lignin obtained from a bioethanol plant can be used without excessive purification in the preparation of lignocellulosic fiber-reinforced biobased composites displaying high mechanical properties. Biotechnol. Bioeng. 2010;107: 612-621. (C) 2010 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lignocellulosic materials can significantly contribute to the development of biobased composites. In this work, glyoxal-phenolic resins for composites were prepared using glyoxal, which is a dialdehyde obtained from several natural resources. The resins were characterized by (1)H, (13)C, (2)D, and (31)P NMR spectroscopies. Resorcinol (10%) was used as an accelerator for curing the glyoxal-phenol resins in order to obtain the thermosets. The impact-strength measurement showed that regardless of the cure cycle used, the reinforcement of thermosets by 30% (w/w) sisal fibers improved the impact strength by one order of magnitude. Curing with cycle 1 (150 degrees C) induced a high diffusion coefficient for water absorption in composites, due to less interaction between the sisal fibers and water. The composites cured with cycle 2 (180 degrees C) had less glyoxal resin coverage of the cellulosic fibers, as observed by images of the fractured interface observed by SEM. This study shows that biobased composites with good properties can be prepared using a high proportion of materials obtained from natural resources. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A tannin-phenolic resin (40 wt% of tannin, characterized by H-1 nuclear magnetic resonance (NMR) and C-13 NMR, Fourier transform infrared, thermogravimetry, differential scanning calorimetry) was used to prepare composites reinforced with sisal fibers (30-70 wt%). Inverse gas chromatography results showed that the sisal fibers and the tannin-phenolic thermoset have close values of the dispersive component and also have predominance of acid sites (acid character) at the surface, confirming the favoring of interaction between the sisal fibers and the tannin-phenolic matrix at the interface. The Izod impact strength increased up to 50 wt% of sisal fibers. This composite also showed high storage modulus, and the lower loss modulus, confirming its good fiber/matrix interface, also observed by SEM images. A composite with good properties was prepared from high content of raw material obtained from renewable sources (40 wt% of tannin substituted the phenol in the preparation of the matrix and 50 wt% of matrix was replaced by sisal fibers). (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the present study, films based on linter cellulose and chitosan were prepared using an aqueous solution of sodium hydroxide (NaOH)/thiourea as the solvent system. The dissolution process of cellulose and chitosan in NaOH/thiourea aqueous solution was followed by the partial chain depolymerization of both biopolymers, which facilitates their solubilization. Biobased films with different chitosan/cellulose ratios were then elaborated by a casting method and subsequent solvent evaporation. They were characterized by X-ray analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM), thermal analysis, and tests related to tensile strength and biodegradation properties. The SEM images of the biofilms with 50/50 and 60/40 ratio of chitosan/cellulose showed surfaces more wrinkled than the others. The AFM images indicated that higher the content of chitosan in the biobased composite film, higher is the average roughness value. It was inferred through thermal analysis that the thermal stability was affected by the presence of chitosan in the films; the initial temperature of decomposition was shifted to lower levels in the presence of chitosan. Results from the tests for tensile strength indicated that the blending of cellulose and chitosan improved the mechanical properties of the films and that an increase in chitosan content led to production of films with higher tensile strength and percentage of elongation. The degradation study in a simulated soil showed that the higher the crystallinity, the lower is the biodegradation rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new biobased composite was developed by adding soy flour (SF) to polypropylene (PP). This composite shows an enhanced tensile strength and modulus but decrease in elongation at break. The compatibilizer (coupling agent) appears to have a synergistic effect on tensile strength. The presence of the compatibilizer improves the dispersion of SF in the PP matrix. The addition of glycerol plasticizer to the composite improves the processability resulting in improved performance, as compared to composites without glycerol plasticizer. The optimal compatibilizer content appears to be 6%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermoset phenolic composites reinforced with sisal fibers were prepared to optimize the cure step. In the present study, processing parameters such as pressure, temperature, and time interval were varied to control the vaporization of the water generated as a byproduct during the crosslinking reaction. These molecules can vaporize forming voids, which in turn affect the final material properties. The set of results on impact strength revealed that the application of higher pressure before the gel point of the phenolic matrix produced composites with better properties. The SEM images showed that the cure cycle corresponding to the application of higher values of molding pressure at the gel point of the phenolic resin led to the reduction of voids in the matrix. In addition, the increase in the molding pressure during the cure step increased the resin interdiffusion. Better filling of the fiber channels decreased the possibility of water molecules diffusing through the internal spaces of the fibers. These molecules then diffused mainly through the bulk of the thermoset matrix, which led to a decrease in the water diffusion coefficient (D) at all three temperatures (25, 55 and 70 degrees C) considered in the experiments. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report reviews the selection, design, and installation of fiber reinforced polymer systems for strengthening of reinforced concrete or pre-stressed concrete bridges and other structures. The report is prepared based on the knowledge gained from worldwide experimental research, analytical work, and field applications of FRP systems used to strengthen concrete structures. Information on material properties, design and installation methods of FRP systems used as external reinforcement are presented. This information can be used to select an FRP system for increasing the strength and stiffness of reinforced concrete beams or the ductility of columns, and other applications. Based on the available research, the design considerations and concepts are covered in this report. In the next stage of the project, these will be further developed as design tools. It is important to note, however, that the design concepts proposed in literature have not in many cases been thoroughly developed and proven. Therefore, a considerable amount of research work will be required prior to development of the design concepts into practical design tools, which is a major goal of the current research project. The durability and long-term performance of FRP materials has been the subject of much research, which still are on going. Long-term field data are not currently available, and it is still difficult to accurately predict the life of FRP strengthening systems. The report briefly addresses environmental degradation and long-term durability issues as well. A general overview of using FRP bars as primary reinforcement of concrete structures is presented in Chapter 8. In Chapter 9, a summary of strengthening techniques identified as part of this initial stage of the research project and the issues which require careful consideration prior to practical implementation of these identified techniques are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A worldwide interest is being generated in the use of fibre reinforced polymer composites (FRP) in rehabilitation of reinforced concrete structures. As a replacement for the traditional steel plates or external post-tensioning in strengthening applications, various types of FRP plates, with their high strength to weight ratio and good resistance to corrosion, represent a class of ideal material in external retrofitting. Within the last ten years, many design guidelines have been published to provide guidance for the selection, design and installation of FRP systems for external strengthening of concrete structures. Use of these guidelines requires understanding of a number of issues pertaining to different properties and structural failure modes specific to these materials. A research initiative funded by the CRC for Construction Innovation was undertaken (primarily at RMIT) to develop a decision support tool and a user friendly guide for use of fibre reinforced polymer composites in rehabilitation of concrete structures. The user guidelines presented in this report were developed after industry consultation and a comprehensive review of the state of the art technology. The scope of the guide was mainly developed based on outcomes of two workshops with Queensland Department of Main Roads (QDMR). The document covers material properties, recommended construction requirements, design philosophy, flexural, shear and torsional strengthening of beams and strengthening of columns. In developing this document, the guidelines published on FIB Bulletin 14 (2002), Task group 9.3, International Federation of Structural Concrete (FIB) and American Concrete Institute Committee 440 report (2002) were consulted in conjunction with provisions of the Austroads Bridge design code (1992) and Australian Concrete Structures code AS3600 (2002). In conclusion, the user guide presents design examples covering typical strengthening scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report presents a summary of the research conducted by the research team of the CRC project 2002-005-C, “Decision support tools for concrete infrastructure rehabilitation”. The project scope, objectives, significance and innovation and the research methodology is outlined in the introduction, which is followed by five chapters covering different aspects of the research completed. Major findings of a review of literature conducted covering both use of fibre reinforced polymer composites in rehabilitation of concrete bridge structures and decision support frameworks in civil infrastructure asset management is presented in chapter two. Case study of development of a strengthening scheme for the “Tenthill Creek bridge” is covered in the third chapter, which summarises the capacity assessment, traditional strengthening solution and the innovative solution using FRP composites. The fourth chapter presents the methodology for development of a user guide covering selection of materials, design and application of FRP in strengthening of concrete structures, which were demonstrated using design examples. Fifth chapter presents the methodology developed for evaluating whole of life cycle costing of treatment options for concrete bridge structures. The decision support software tool developed to compare different treatment options based on reliability based whole of life cycle costing will be briefly described in this chapter as well. The report concludes with a summary of findings and recommendations for future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper compares and reviews the recommendations and contents of the guide for the design and construction of externally bonded FRP systems for strengthening concrete structures reported by ACI committee 440 and technical report of Externally bonded FRP reinforcement for RC structures (FIB 14) in application of carbon fiber reinforced polymer (CFRP) composites in strengthening of an aging reinforced concrete headstock. The paper also discusses the background, limitations, strengthening for flexure and shear, and other related issues in use of FRP for strengthening of a typical reinforced concrete headstock structure such as durability, de-bonding, strengthening limits, fire and environmental conditions. A case study of strengthening of a bridge headstock using FRP composites is presented as a worked example in order to illustrate and compare the differences between these two design guidelines when used in conjunction with the philosophy of the Austroads (1992) bridge design code.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fracture behavior of Cu-Ni laminate composites has been investigated by tensile testing. It was found that as the individual layer thickness decreases from 100 to 20nm, the resultant fracture angle of the Cu-Ni laminate changes from 72 degrees to 50 degrees. Cross-sectional observations reveal that the fracture of the Ni layers transforms from opening to shear mode as the layer thickness decreases while that of the Cu layers keeps shear mode. Competition mechanisms were proposed to understand the variation in fracture mode of the metallic laminate composites associated with length scale.