480 resultados para Bioassays
Resumo:
Infestations of the marine macrophytic alga Caulerpa taxifolia were discovered in Agua Hedionda Lagoon, California in 2000. Rapid response actions included containment under pvc tarps coupled with injection of liquid sodium hypochlorite. To assess the efficacy of these treatments, replicated sediment cores were removed from representative treated sites and transferred to grow-out facilities. Similar cores from uninfested (control) sediments were removed, inoculated with viable explants of C. taxifolia and placed in grow-out facilities. Results from two sampling periods (1 year, 2 years post-treatment) showed that no viable C. taxifolia emerged in cores, and that inoculated “control” sediments supported normal growth. Eelgrass ( Zostera marina L.) seedlings emerged from native seed-banks in “treated” cores, which also supported growth of some invertebrates (annelid worms and hydroids). This study provided essential verification of C. taxifolia eradication efforts, and demonstrates the feasibility of incorporating quality control/quality assurance components in rapid response actions. Results of this study also suggest that seeds of eelgrass are viable for at least two years. (PDF has 9 pages.)
Resumo:
The best evidence for establishing the level of eutrophy of a water-body is its algal production which makes it possible to identify the type and the intensity of the eutrophication according to the kind and number of algal species present: when the number of algae exceeds half a million per litre then one speaks o an ”algal bloom”. The scope of the present research aims to verify if the alga Selenastrum capricornutum can be used as a test alga under our culture conditions and to determine the eutrophic level of the secondary effluent of a modern plant for the treatment of domestic discharge and to investigate the eventual ”limiting factors”. Finally this paper aims to study the effect on the secondary effluent of tertiary treatment carried out artificially in the laboratory.
Resumo:
The dinoflagellate Alexandrium minutum and the haptophyte Prymnesium parvum are well known for their toxin production and negative effects in marine coastal environments. A. minutum produces toxins which cause paralytic shellfish poisoning in humans and can affect copepods, shellfish and other marine organisms. Toxins of P. parvum are associated with massive fish mortalities resulting in negative impacts on the marine ecosystem and large economic losses in commercial aquaculture. The aim of this work is to improve our knowledge about the reliability of the use of marine invertebrate bioassays to detect microalgae toxicity, by performing: (i) a 24- to 48-h test with the brine shrimp Artemia franciscana; (ii) a 48-hour embryo-larval toxicity test with the sea urchin Paracentrotus lividus; and (iii) a 72-h test with the amphipod Corophium multisetosum. The results indicate that A. franciscana and P. lividus larvae are sensitive to the toxicity of A. minutum and P. parvum. LC50 comparison analysis between the tested organisms reveals that A. franciscana is the most sensitive organism for A. minutum. These findings suggest that the use of different organizational biological level bioassays appears to be a suitable tool for A. minutum and P. parvum toxicity assessment.
Resumo:
In this study, a combination of enzyme-linked receptor assay (ELRA) and yeast estrogen screen (YES) assay was firstly applied to determine whether automobile tires immersed in fresh water can leach chemicals, which display estrogenic activity. We optimized ELRA substituting the chromogene substrate by a luminescent one, and found that luminescent ELBA was more sensitive to 17 beta-estradiol (17 beta-E2) with a detection limit of 0.016 mu g/l, compared to 0.088 mu g/l in the chromogene version. In ELRA, all tire leachates obviously showed estrogenic activity, which was increased with duration of immersion. Moreover, the leachate from hackled tires showed more potent estrogenicity than that from the whole ones. In comparison to ELRA, no detectable estrogenic activity was found in all tire leachates with YES assay. The results from YES assay further evidenced that antiestrogenic compounds can be leached from tires. As tire leachates contain estrogenic compounds, they could be important pollution sources, potentially harmful to wildlife and human health. Thus, use of shredded tires as road fill or in landfill sites should arouse our attention.
Resumo:
This study was undertaken to compare the sensitivity of two in vitro screening test methods and to determine the accuracy of predicted response to spiked laboratory water samples. A newly developed enzyme-linked receptor assay (ELRA) and a widely used yeast estrogen screen (YES) assay were selected to evaluate the estrogenic responses. Four natural, pharmaceutical, xenobiotic or phytobiotic chemicals: 17beta-estradiol (E2), tamoxifen, bisphenol-A and resveratrol were examined, and 17beta-E2 was used as a positive control. 17beta-E2 can strongly induce estrogenic response in both test systems, however, ELRA was found to be more sensitive to 17beta-E2 with a detection limit of 0.07 mug/l compared to 0.88 mug/l in YES assay. Similar results were obtained for bisphenol-A and resveratrol, and their estrogen potencies relative to E2 (100%) determined by ELRA were at least 5.6 times greater than produced by YES assay. ELRA was unable to distinguish the anti-estrogen tamoxifen and YES assay is also poor at distinguishing. Comparison of response to spiked laboratory water samples show that ELRA can give accurate determination to all four chemicals with recoveries among 70-120%, while YES can only give accurate determination to 17beta-E2 and bisphenol-A with recoveries among 69-112%. The comparative results provide evidence that ELRA is more suitable for rapid screening estrogenic potency of the environmental samples. Combination of ELRA and mammalian cellular assay will constitute an advantageous test to specify agonistic or antagonistic effects. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The ubiquitous marine trace gas dimethyl sulphide (DMS) comprises the greatest natural source of sulphur to the atmosphere and is a key player in atmospheric chemistry and climate. We explore the short term response of DMS and its algal precursor dimethyl sulphoniopropionate (DMSP) production and cycling to elevated carbon dioxide (CO2) and ocean acidification (OA) in five highly replicated 96 h shipboard bioassay experiments from contrasting sites in NW European shelf waters. In general, the response to OA throughout this region showed little variation, despite encompassing a range of biological and biogeochemical conditions. We observed consistent and marked increases in DMS concentrations relative to ambient controls, and decreases in DMSP concentrations. Quantification of rates of specific DMSP synthesis by phytoplankton and bacterial DMS gross production/consumption suggest algal processes dominated the CO2 response, likely due to a physiological response manifested as increases in direct cellular exudation of DMS and/or DMSP lyase enzyme activities. The variables and rates we report increase our understanding of the processes behind the response to OA. This could provide the opportunity to improve upon mesocosm-derived empirical modelling relationships, and move towards a mechanistic approach for predicting future DMS concentrations.
Resumo:
The ubiquitous marine trace gas dimethyl sulfide (DMS) comprises the greatest natural source of sulfur to the atmosphere and is a key player in atmospheric chemistry and climate. We explore the short-term response of DMS production and cycling and that of its algal precursor dimethyl sulfoniopropionate (DMSP) to elevated carbon dioxide (CO2) and ocean acidification (OA) in five 96 h shipboard bioassay experiments. Experiments were performed in June and July 2011, using water collected from contrasting sites in NW European waters (Outer Hebrides, Irish Sea, Bay of Biscay, North Sea). Concentrations of DMS and DMSP, alongside rates of DMSP synthesis and DMS production and consumption, were determined during all experiments for ambient CO2 and three high-CO2 treatments (550, 750, 1000 μatm). In general, the response to OA throughout this region showed little variation, despite encompassing a range of biological and biogeochemical conditions. We observed consistent and marked increases in DMS concentrations relative to ambient controls (110% (28–223%) at 550 μatm, 153% (56–295%) at 750 μatm and 225% (79–413%) at 1000 μatm), and decreases in DMSP concentrations (28% (18–40%) at 550 μatm, 44% (18–64%) at 750 μatm and 52% (24–72%) at 1000 μatm). Significant decreases in DMSP synthesis rate constants (μDMSP, d−1) and DMSP production rates (nmol d−1) were observed in two experiments (7–90% decrease), whilst the response under high CO2 from the remaining experiments was generally indistinguishable from ambient controls. Rates of bacterial DMS gross consumption and production gave weak and inconsistent responses to high CO2. The variables and rates we report increase our understanding of the processes behind the response to OA. This could provide the opportunity to improve upon mesocosm-derived empirical modelling relationships and to move towards a mechanistic approach for predicting future DMS concentrations.