271 resultados para Bioaccumulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last decades, increasing scientific evidence has correlated the regular consumption of (poly)phenol-rich foods to a potential reduction of chronic disease incidence and mortality. However, epidemiological evidence on the role of (poly)phenol intake against the risk of some chronic diseases is promising, but not conclusive. In this framework a proper approach to (poly)phenol research is requested, using a step by step strategy. The plant kingdom produces an overwhelming array of structurally diverse secondary metabolites, among which flavonoids and related phenolic and (poly)phenolic compounds constitute one of the most numerous and widely distributed group of natural products. To date, more than 8000 structures have been classified as members of the phytochemical class of (poly)phenol, and among them over 4000 flavonoids have been identified. For this reason, a detailed food (poly)phenolic characterization is essential to identify the compounds that will likely enter the human body upon consumption, to predict the metabolites that will be generated and to unravel the potential effects of phenolic rich food sources on human health. In the first part of this work the attention was focused on the phenolic characterization of fruit and vegetable supplements, considering the increasing attention recently addressed to the so called "nutraceuticals", and on the main coffee industry by-product, namely coffee silverskin. The interest oriented toward (poly)phenols is then extended to their metabolism within the human body, paramount in the framework of their putative health promoting effects. Like all nutrients and non-nutrients, once introduced through the diet, (poly)phenols are subjected to an intense metabolism, able to convert the native compounds into similar conjugated, as well as smaller and deeply modified molecules, which in turn could be further conjugated. Although great strides have been made in the last decades, some steps of the (poly)phenol metabolism remain unclear and are interesting points of research. In the second part of this work the research was focused on a specific bran fraction, namely aleurone, added in feed pellets and in bread to investigate the absorption, metabolism and bioavailability of its phenolic compounds in animal and humans, with a preliminary in vitro step to determine their potential bioaccesibility. This part outlines the best approaches to assess the bioavailability of specific phenolics in several experimental models. The physiological mechanisms explaining the epidemiological and observational data on phenolics and health, are still far from being unraveled or understood in full. Many published results on phenolic actions at cell levels are biased by the fact that aglycones or native compounds have been used, not considering the previously mentioned chemical and biological transformations. In the last part of this thesis work, a new approach in (poly)phenol bioactivity investigation is proposed, consisting of a medium-long term treatment of animals with a (poly)phenol source, in this specific case resveratrol, the detection of its metabolites to determine their possible specific tissue accumulation, and the evaluation of specific parameters and/or mechanism of action at target tissue level. To conclude, this PhD work has contributed to advancing the field, as novel sources of (poly)phenols have been described, the bioavailability of (poly)phenols contained in a novel specific bran fraction used as ingredient has been evaluated in animal and in humans, and, finally, the tissue accumulation of specific (poly)phenol metabolites and the evaluation of specific parameters and/or mechanism of action has been carried out. For these reasons, this PhD work should be considered an example of adequate approach to the investigation of (poly)phenols and of their bioactivity, unavoidable in the process of unequivocally defining their effects on human health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

β-methylamino-L-alanine (BMAA) is a neurotoxin linked to neurodegeneration, which is manifested in the devastating human diseases amyotrophic lateral sclerosis, Alzheimer’s and Parkinson’s disease. This neurotoxin is known to be produced by almost all tested species within the cyanobacterial phylum including free living as well as the symbiotic strains. The global distribution of the BMAA producers ranges from a terrestrial ecosystem on the Island of Guam in the Pacific Ocean to an aquatic ecosystem in Northern Europe, the Baltic Sea, where annually massive surface blooms occur. BMAA had been shown to accumulate in the Baltic Sea food web, with highest levels in the bottom dwelling fish-species as well as in mollusks. One of the aims of this thesis was to test the bottom-dwelling bioaccumulation hypothesis by using a larger number of samples allowing a statistical evaluation. Hence, a large set of fish individuals from the lake Finjasjön, were caught and the BMAA concentrations in different tissues were related to the season of catching, fish gender, total weight and species. The results reveal that fish total weight and fish species were positively correlated with BMAA concentration in the fish brain. Therefore, significantly higher concentrations of BMAA in the brain were detected in plankti-benthivorous fish species and heavier (potentially older) individuals. Another goal was to investigate the potential production of BMAA by other phytoplankton organisms. Therefore, diatom cultures were investigated and confirmed to produce BMAA, even in higher concentrations than cyanobacteria. All diatom cultures studied during this thesis work were show to contain BMAA, as well as one dinoflagellate species. This might imply that the environmental spread of BMAA in aquatic ecosystems is even higher than previously thought. Earlier reports on the concentration of BMAA in different organisms have shown highly variable results and the methods used for quantification have been intensively discussed in the scientific community. In the most recent studies, liquid chromatography-tandem mass spectrometry (LC-MS/MS) has become the instrument of choice, due to its high sensitivity and selectivity. Even so, different studies show quite variable concentrations of BMAA. In this thesis, three of the most common BMAA extraction protocols were evaluated in order to find out if the extraction could be one of the sources of variability. It was found that the method involving precipitation of proteins using trichloroacetic acid gave the best performance, complying with all in-house validation criteria. However, extractions of diatom and cyanobacteria cultures with this validated method and quantified using LC-MS/MS still resulted in variable BMAA concentrations, which suggest that also biological reasons contribute to the discrepancies. The current knowledge on the environmental factors that can induce or reduce BMAA production is still limited. In cyanobacteria, production of BMAA was earlier shown to be negative correlated with nitrogen availability – both in laboratory cultures as well as in natural populations. Based on this observation, it was suggested that in unicellular non-diazotrophic cyanobacteria, BMAA might take part in nitrogen metabolism. In order to find out if BMAA has a similar role in diatoms, BMAA was added to two diatom species in culture, in concentrations corresponding to those earlier found in the diatoms. The results suggest that BMAA might induce a nitrogen starvation signal in diatoms, as was earlier observed in cyanobacteria. However, diatoms recover shortly by the extracellular presence of excreted ammonia. Thus, also in diatoms, BMAA might be involved in the nitrogen balance in the cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Common terns currently are listed as endangered or threatened in many states, including Illinois, Vermont, Pennsylvania, Ohio, Wisconsin, Michigan, and New York, and a species of special concern by the U.S. Fish and Wildlife Service (USFWS, 2002). The sole remaining nesting colony in Illinois is located at the Naval Station Great Lakes (NSGL) in Lake County where intensive management by the Illinois Department of Natural Resources has reduced nest predation and increased the number of eggs that hatch. However, the overall reproductive success (the number of young successfully reaching independence) has not improved. Observations of gross deformities in hatchlings (i.e. compromised feather development and cross-bill), lethargic behavior of young birds, and lesions, suggested the influence of environmental contaminants (Jablonski et al., 2005). I investigated if there were significant levels of environmental contaminants in eggs and nestlings of common terns. While there were minimal concentration of selenium, mercury, lead, and cadmium, there were large concentration of polychlorinated biphenyls (PCBs) in both the eggs and nestlings. The greater amounts of PCBs in older chicks than younger chicks suggest local contamination. In order to potentially manage the factors responsible for exposing the terns to PCBs I investigated the pathway by which PCBs were exposed to terns. The two most likely biological pathways as determined by research on Great Lake fishes were investigated. The first pathway is through atmospheric deposition of PCBs and resuspension of PCB-ladel sediment which are subsequently acquired by filter-feeding fish (e.g. alewives, Alosa pseudoharengus) and then pelagic fish (e.g. lake trout, Salvelinus namaychus) or in this case terns. The second pathway explored was via the biodeposits of zebra mussels which are consumed by round gobies (Neogobius melanostromus) and ultimately littoral fish (e.g. small-mouthed bass, Micropterus dolomieui) or terns. Because common terns breed in near-shore sites where concentrations of zebra mussels are found, as well as forage in more pelagic environments it is possible that either or both pathways may be contributing to their PCB exposure. Field experiments and stable isotope analyses demonstrated that the most likely pathway by which terns are exposed to PCBs is via alewives, similar to how apex predators such as lake trout acquire PCBs. Biodeposits from zebra mussels do not appear to be a significant factor in PCB accumulation in terns. The impact of PCB exposure on birds can vary widely, however in this situation we choise to investigate one specific behavior often affected by PCB exposure, parental attentiveness. PCBs are known to cause endocrine disruption which ultimately results in reduced brooding of young and incubation of eggs. I used temperature sensors to quantify nest temperatures and parental attentiveness during incubation. High concentrations of PCBs in our study population appear to be leading to poor parental attentiveness, and extended periods of absence during incubation and brooding, ultimately leading to poor reproductive success. Common terns are perilously close to being extirpated in Illinois and management of PCB exposure will be difficult. I propose that additional testing should be conducted to locate a site with less PCB contamination and then to move the tern colony to this location, possibly using social cues as has been done with other tern species in Illinois. PCBs are having a profound impact on common tern populations in Illinois and without moving the colony it is likely that the population will continue to decline.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de dout. Ciências e Tecnologias do Ambiente, Faculdade de Ciências do Mar e do Ambiente, Univ. do Algarve, 2004

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bioaccumulation and elimination of endosulfan in zebra fish (Brachydanio rerio) were investigated in a semi-static bioassay. The pesticide mean concentration in water was 03ug litre(-1) and the level of endosulfan residues (x(alfa)+B(beta)-isomers+endosulfan sulfate) in the exposed fish at day 21 was 0.81 (+-0.12)ug g(-1) body weight. The estimated value of the bioconcentration factor (BCF) was 2650 (+-441), the total endosulfan residues being eliminated with a biological half-life of four days. Histopathological studies showed predominantly lipid accumulation in the liver and necrotic focus in the gills of exposed fish.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concentrations of Na, K, Ca, Mg, Ba, Sr, Fe, Al, Mn, Zn, Pb, Cu, Ni, Cr, Co, Se, U and Ti were determined in the osteoderms and/or flesh of estuarine crocodiles (Crocodylus porosus) captured in three adjacent catchments within the Alligator Rivers Region (ARR) of northern Australia. Results from multivariate analysis of variance showed that when all metals were considered simultaneously, catchment effects were significant (P≤0.05). Despite considerable within-catchment variability, linear discriminant analysis (LDA) showed that differences in elemental signatures in the osteoderms and/or flesh of C. porosus amongst the catchments were sufficient to classify individuals accurately to their catchment of occurrence. Using cross-validation, the accuracy of classifying a crocodile to its catchment of occurrence was 76% for osteoderms and 60% for flesh. These data suggest that osteoderms provide better predictive accuracy than flesh for discriminating crocodiles amongst catchments. There was no advantage in combining the osteoderm and flesh results to increase the accuracy of classification (i.e. 67%). Based on the discriminant function coefficients for the osteoderm data, Ca, Co, Mg and U were the most important elements for discriminating amongst the three catchments. For flesh data, Ca, K, Mg, Na, Ni and Pb were the most important metals for discriminating amongst the catchments. Reasons for differences in the elemental signatures of crocodiles between catchments are generally not interpretable, due to limited data on surface water and sediment chemistry of the catchments or chemical composition of dietary items of C. porosus. From a wildlife management perspective, the provenance or source catchment(s) of 'problem' crocodiles captured at settlements or recreational areas along the ARR coastline may be established using catchment-specific elemental signatures. If the incidence of problem crocodiles can be reduced in settled or recreational areas by effective management at their source, then public safety concerns about these predators may be moderated, as well as the cost of their capture and removal. Copyright © 2002 Elsevier Science B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Baltic Sea was studied with respect to selected organic contaminants and their ecotoxicology. The research consisted of analyses of total hydrocarbons, polycyclic aromatic hydrocarbons, bile metabolites, hepatic ethoxyresorufin-O-deethylase (EROD) activity, polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). The contaminants were measured from various matrices, such as seawater, sediment and biota. The methods of analysis were evaluated and refined to comparability of the results. Polyaromatic hydrocarbons, originating from petroleum, are known to be among the most harmful substances to the marine environment. In Baltic subsurface water, seasonal dependence of the total hydrocarbon concentrations (THCs) was seen. Although concentrations of parent polycyclic aromatic hydrocarbons (PAHs) in sediment surface varied between 64 and 5161 ug kg-1 (dw), concentrations above 860 ug kg-1 (dw) were found in all the studied sub-basins of the Baltic Sea. Concentrations commonly considered to substantially increase the risk of liver disease and reproductive impairment in fish, as well as potential effects on growth (above 1000 ug kg-1 dw), were found in all the studied sub-basins of the Baltic Sea except Kattegat. Thus, considerable pollution in sediments was indicated. In bivalves, the sums of 12 PAHs varied on a wet weight basis between 44 and 298 ug kg-1 (ww). The predominant PAHs were high molecular weight and the PAH profiles of M. balthica differed from those found in sediment from the same area. The PAHs were both pyrolytic and petrogenic in origin, and a contribution from diesel engines was found, which indicates pollution of the Baltic Sea, most likely caused by the steadily increasing shipping in the area. The HPLC methods developed for hepatic EROD activity and bile metabolite measurements proved to be fast and suitable for the study of biological effects. A mixed function oxygenase enzyme system in Baltic Sea perch collected from the Gulf of Finland was induced slightly: EROD activity in perch varied from 0.30 14 pmol min-1 mg-1 protein. This range can be considered to be comparable to background values. Recent PAH exposure was also indicated by enhanced levels (213 and 1149 ug kg-1) of the bile metabolite 1-hydroxypyrene. No correlation was indicated between hepatic EROD activity and concentration of 1-hydroxypyrene in bile. PCBs and OCPs were observed in Baltic Sea sediment, bivalves and herring. Sums of seven CBs in surface sediment (0 5 cm) ranged from 0.04 to 6.2 ug kg-1 (dw) and sums of three DDTs from 0.13 to 5.0 ug kg-1 (dw). The highest levels of contaminants were found in the most eastern area of the Gulf of Finland where the highest total carbon and nitrogen content was found and where the lowest percentage proportion of p,p -DDT was found. The highest concentrations of CBs and the lowest concentration of DDTs were found in M. balthica from the Gulf of Finland. The highest levels of DDTs were found in M. balthica from the Hanö Bight, which is the outer part of the Bornholm Basin close to the Swedish mainland. In bivalves, the sums of seven CBs were 72 108 ug kg-1 (lw) and the sums of three DDTs were 66 139 ug kg-1 (lw). Results from temporal trend monitoring showed, that during the period 1985 2002, the concentrations of seven CBs in two-year-old female Baltic herring were clearly decreased, from 9 16 to 2 6 ug kg-1 (ww) in the northern Baltic Sea. At the same time, concentrations of three DDTs declined from 8 15 to 1 5 ug kg-1 (ww). The total concentration of the fat-soluble CBs and DDTs in Baltic herring muscle was shown to be age-dependent; the average concentrations in ten-year-old Baltic herring were three to five-fold higher than in two-year-old herring. In Baltic herring and bivalves, as well as in surface sediments, CB 138 and CB153 were predominant among CBs, whereas among DDTs p,p'-DDD predominated in sediment and p,p'-DDE in bivalves and Baltic herring muscle. Baltic Sea sediments are potential sources of contaminants that may become available for bioaccumulation. Based on ecotoxicological assessment criteria, cause for concern regarding CBs in sediments was indicated for the Gulf of Finland and the northern Baltic Proper, and for the northern Baltic Sea regarding CBs in Baltic herring more than two years old. Statistical classification of selected organic contaminants indicated high-level contamination for p,p'-DDT, p,p'-DDD, p,p'-DDE, total DDTs, HCB, CB118 and CB153 in muscle of Baltic herring in age groups two to ten years; in contrast, concentrations of a-HCH and g-HCH were found to be moderate. The concentrations of DDTs and CBs in bivalves is sufficient to cause biological effects, and demonstrates that long-term biological effects are still possible in the case of DDTs in the Hanö Bight.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Health advisories are now posted in northern Florida Bay, adjacent to the Everglades, warning of high mercury concentrations in some species of gamefish. Highest concentrations of mercury in both forage fish and gamefish have been measured in the northeastern corner of Florida Bay, adjacent to the dominant freshwater inflows from the Everglades. Thirty percent of spotted seatrout (Cynoscion nebulosus Cuvier, 1830) analyzed exceeded Florida’s no consumption level of 1.5 μg g−1 mercury in this area. We hypothesized that freshwater draining the Everglades served as the major source of methylmercury entering the food web supporting gamefish. A lack of correlation between mercury concentrations and salinity did not support this hypothesis, although enhanced bioavailability of methylmercury is possible as freshwater is diluted with estuarine water. Stable isotopes of carbon, nitrogen, and sulfur were measured in fish to elucidate the shared pathways of methylmercury and nutrient elements through the food web. These data support a benthic source of both methylmercury and nutrient elements to gamefish within the eastern bay, as opposed to a dominant watershed source. Ecological characteristics of the eastern bay, including active redox cycling in near-surface sediments without excessive sulfide production are hypothesized to promote methylmercury formation and bioaccumulation in the benthos. Methylmercury may then accumulate in gamefish through a food web supported by benthic microalgae, detritus, pink shrimp (Farfantepenaeus duorarum Burkenroad, 1939), and other epibenthic feeders. Uncertainty remains as to the relative importance of watershed imports of methylmercury from the Everglades and in situ production in the bay, an uncertainty that needs resolution if the effects of Everglades restoration on mercury levels in fish are to be modeled and managed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Considerations to introduce the Suminoe or Asian oyster Crassostrea ariakensis along the East Coast have raised many questions regarding ecology, economics, and human health. To date, research has focused primarily on the ecological and socioeconomic implications of this initiative, yet few studies have assessed its potential impact on public health. Our work compares the rates of bioaccumulation, depuration and post harvest decay of indicator organisms (such as E. coli) and Vibrio sp. between Crassostrea virginica and Crassostrea ariakensis in the laboratory. Preliminary results suggest that the rates of bioaccumulation of E. coli in Crassostrea ariakensis were significantly lower than those for Crassostrea virginica, depuration of E. coli was variable between the two species, and Crassostrea ariakensis post harvest decay rates of Vibrio sp. were significantly lower than Crassostrea virginica. This research provides coastal managers with insight into the response of Crassostrea ariakensis to bacteria, an important consideration for determining appropriate management strategies for this species. Further field-based studies will be necessary to elucidate the mechanisms responsible for the differences in rates of bioaccumulation and depuration. (PDF contains 40 pages)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An investigation was conducted into the deaths of more than 220 bottlenose dolphins (Tursiops truncatus) that occurred within the coastal bay ecosystem of mid-Texas between January and May 1992. The high mortality rate was unusual in that it was limited to a relatively small geographical area, occurred primarily within an inshore bay system separated from the Gulf of Mexico by barrier islands, and coincided with deaths of other taxa including birds and fish. Factors examined to determine the potential causes of the dolphin mortalities included microbial pathogens, natural biotoxins, industrial pollutants, other environmental contaminants, and direct human interactions. Emphasis was placed on nonpoint source pesticide runoff from agricultural areas, which had resulted from record rainfall that occurred during the period of increased mortality. Analytical results from sediment, water, and biota indicated that biotoxins, trace metals, and industrial chemical contamination were not likely causative factors in this mortality event. Elevated concentrations of pesticides (atrazine and aldicarb) were detected in surface water samples from bays within the region, and bay salinities were reduced to <10 ppt from December 1991 through April 1992 due to record rainfall and freshwater runoff exceeding any levels since 1939. Prolonged exposure to low salinity could have played a significant role in the unusual mortalities because low salinity exposure may cause disruption of the permeability barrier in dolphin skin. The lack of established toxicity data for marine mammals, particularly dermal absorption and bioaccumulation, precludes accurate toxicological interpretation of results beyond a simple comparison to terrestrial mammalian models. Results clearly indicated that significant periods of agricultural runoff and accompanying low salinities co-occurred with the unusual mortality event in Texas, but no definitive cause of the mortalities was determined. (PDF file contains 25 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microalgas e cianobactérias têm sido amplamente recomendadas para biomonitoração de metais pesados e outros poluentes, sendo considerados indicadores sensíveis às alterações ambientais e utilizados como organismos testes na regulamentação dos níveis de metal. Estes micro-organismos fotossintetizantes são produtores primários da base da cadeia alimentar aquática e são os primeiros a serem afetados pela poluição por metais pesados. O cobre é um metal normalmente considerado como nutriente essencial para a vida aquática mas pode ser tóxico para algumas espécies. Portanto, neste estudo foram avaliados o efeito tóxico e a bioacumulação de cobre (II) em quatro espécies de micro-organismos fotoautotróficos componentes do fitoplâncton dulcícola, duas cianobactérias filamentosas (Anabaena sp. e Oscillatoria sp) e duas microalgas da classe das clorofíceas (Monorraphidium sp. e Scenedesmus sp.). O meio de cultivo utilizado nos ensaios foi o ASM-1 com e sem a presença de cobre (0,6 mg/L a 12 mg Cu2+/L) onde, o efeito tóxico do metal foi monitorado por contagem celular para as microalgas e por peso seco para as cianobactérias. A bioacumulação do metal foi avaliada da mesma forma para todos os micro-organismos, através de coletas de amostras no decorrer do experimento e determinação da concentração de cobre em solução por espectrometria de absorção atômica com chama. Os resultados obtidos mostram que o efeito tóxico do metal é diretamente proporcional à concentração inicial para os micro-organismos estudados, mas que o cobre (II) foi mais tóxico para as cianobactérias que para as microalgas verdes. A bioacumulação teve uma relação direta com o efeito tóxico do metal sobre os micro-organismos. Os resultados obtidos permitem sugerir que cobre (II) tem efeito negativo no fitoplâncton, inibindo o crescimento e alterando parâmetros metabólicos como a fotossíntese. A bioacumulação do metal pode comprometer os níveis tróficos da cadeia alimentar, afetando seu transporte para seres superiores