947 resultados para Bio-inspired optimization techniques


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prediction of proteins' conformation helps to understand their exhibited functions, allows for modeling and allows for the possible synthesis of the studied protein. Our research is focused on a sub-problem of protein folding known as side-chain packing. Its computational complexity has been proven to be NP-Hard. The motivation behind our study is to offer the scientific community a means to obtain faster conformation approximations for small to large proteins over currently available methods. As the size of proteins increases, current techniques become unusable due to the exponential nature of the problem. We investigated the capabilities of a hybrid genetic algorithm / simulated annealing technique to predict the low-energy conformational states of various sized proteins and to generate statistical distributions of the studied proteins' molecular ensemble for pKa predictions. Our algorithm produced errors to experimental results within .acceptable margins and offered considerable speed up depending on the protein and on the rotameric states' resolution used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel approach to scheduling resolution by combining Autonomic Computing (AC), Multi-Agent Systems (MAS), Case-based Reasoning (CBR), and Bio-Inspired Optimization Techniques (BIT) will be described. AC has emerged as a paradigm aiming at incorporating applications with a management structure similar to the central nervous system. The main intentions are to improve resource utilization and service quality. In this paper we envisage the use of MAS paradigm for supporting dynamic and distributed scheduling in Manufacturing Systems with AC properties, in order to reduce the complexity of managing manufacturing systems and human interference. The proposed CBR based Intelligent Scheduling System was evaluated under different dynamic manufacturing scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coverage and volume of geo-referenced datasets are extensive and incessantly¦growing. The systematic capture of geo-referenced information generates large volumes¦of spatio-temporal data to be analyzed. Clustering and visualization play a key¦role in the exploratory data analysis and the extraction of knowledge embedded in¦these data. However, new challenges in visualization and clustering are posed when¦dealing with the special characteristics of this data. For instance, its complex structures,¦large quantity of samples, variables involved in a temporal context, high dimensionality¦and large variability in cluster shapes.¦The central aim of my thesis is to propose new algorithms and methodologies for¦clustering and visualization, in order to assist the knowledge extraction from spatiotemporal¦geo-referenced data, thus improving making decision processes.¦I present two original algorithms, one for clustering: the Fuzzy Growing Hierarchical¦Self-Organizing Networks (FGHSON), and the second for exploratory visual data analysis:¦the Tree-structured Self-organizing Maps Component Planes. In addition, I present¦methodologies that combined with FGHSON and the Tree-structured SOM Component¦Planes allow the integration of space and time seamlessly and simultaneously in¦order to extract knowledge embedded in a temporal context.¦The originality of the FGHSON lies in its capability to reflect the underlying structure¦of a dataset in a hierarchical fuzzy way. A hierarchical fuzzy representation of¦clusters is crucial when data include complex structures with large variability of cluster¦shapes, variances, densities and number of clusters. The most important characteristics¦of the FGHSON include: (1) It does not require an a-priori setup of the number¦of clusters. (2) The algorithm executes several self-organizing processes in parallel.¦Hence, when dealing with large datasets the processes can be distributed reducing the¦computational cost. (3) Only three parameters are necessary to set up the algorithm.¦In the case of the Tree-structured SOM Component Planes, the novelty of this algorithm¦lies in its ability to create a structure that allows the visual exploratory data analysis¦of large high-dimensional datasets. This algorithm creates a hierarchical structure¦of Self-Organizing Map Component Planes, arranging similar variables' projections in¦the same branches of the tree. Hence, similarities on variables' behavior can be easily¦detected (e.g. local correlations, maximal and minimal values and outliers).¦Both FGHSON and the Tree-structured SOM Component Planes were applied in¦several agroecological problems proving to be very efficient in the exploratory analysis¦and clustering of spatio-temporal datasets.¦In this thesis I also tested three soft competitive learning algorithms. Two of them¦well-known non supervised soft competitive algorithms, namely the Self-Organizing¦Maps (SOMs) and the Growing Hierarchical Self-Organizing Maps (GHSOMs); and the¦third was our original contribution, the FGHSON. Although the algorithms presented¦here have been used in several areas, to my knowledge there is not any work applying¦and comparing the performance of those techniques when dealing with spatiotemporal¦geospatial data, as it is presented in this thesis.¦I propose original methodologies to explore spatio-temporal geo-referenced datasets¦through time. Our approach uses time windows to capture temporal similarities and¦variations by using the FGHSON clustering algorithm. The developed methodologies¦are used in two case studies. In the first, the objective was to find similar agroecozones¦through time and in the second one it was to find similar environmental patterns¦shifted in time.¦Several results presented in this thesis have led to new contributions to agroecological¦knowledge, for instance, in sugar cane, and blackberry production.¦Finally, in the framework of this thesis we developed several software tools: (1)¦a Matlab toolbox that implements the FGHSON algorithm, and (2) a program called¦BIS (Bio-inspired Identification of Similar agroecozones) an interactive graphical user¦interface tool which integrates the FGHSON algorithm with Google Earth in order to¦show zones with similar agroecological characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the fast development of wireless communications, ZigBee and semiconductor devices, home automation networks have recently become very popular. Since typical consumer products deployed in home automation networks are often powered by tiny and limited batteries, one of the most challenging research issues is concerning energy reduction and the balancing of energy consumption across the network in order to prolong the home network lifetime for consumer devices. The introduction of clustering and sink mobility techniques into home automation networks have been shown to be an efficient way to improve the network performance and have received significant research attention. Taking inspiration from nature, this paper proposes an Ant Colony Optimization (ACO) based clustering algorithm specifically with mobile sink support for home automation networks. In this work, the network is divided into several clusters and cluster heads are selected within each cluster. Then, a mobile sink communicates with each cluster head to collect data directly through short range communications. The ACO algorithm has been utilized in this work in order to find the optimal mobility trajectory for the mobile sink. Extensive simulation results from this research show that the proposed algorithm significantly improves home network performance when using mobile sinks in terms of energy consumption and network lifetime as compared to other routing algorithms currently deployed for home automation networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionic Liquids (ILs) consist in organic salts that are liquid at/or near room temperature. Since ILs are entirely composed of ions, the formation of ion pairs is expected to be one essential feature for describing solvation in ILs. In recent years, protein - ionic liquid (P-IL) interactions have been the subject of intensive studies mainly because of their capability to promote folding/unfolding of proteins. However, the ion pairs and their lifetimes in ILs in P-IL thematic is dismissed, since the action of ILs is therefore the result of a subtle equilibrium between anion-cation interaction, ion-solvent and ion-protein interaction. The work developed in this thesis innovates in this thematic, once the design of ILs for protein stabilisation was bio-inspired in the high concentration of organic charged metabolites found in cell milieu. Although this perception is overlooked, those combined concentrations have been estimated to be ~300 mM among the macromolecules at concentrations exceeding 300 g/L (macromolecular crowding) and transient ion-pair can naturally occur with a potential specific biological role. Hence the main objective of this work is to develop new bio-ILs with a detectable ion-pair and understand its effects on protein structure and stability, under crowding environment, using advanced NMR techniques and calorimetric techniques. The choline-glutamate ([Ch][Glu]) IL was synthesized and characterized. The ion-pair was detected in water solutions using mainly the selective NOE NMR technique. Through the same technique, it was possible to detect a similar ion-pair promotion under synthetic and natural crowding environments. Using NMR spectroscopy (protein diffusion, HSQC experiments, and hydrogen-deuterium exchange) and differential scanning calorimetry (DSC), the model protein GB1 (production and purification in isotopic enrichment media) it was studied in the presence of [Ch][Glu] under macromolecular crowding conditions (PEG, BSA, lysozyme). Under dilute condition, it is possible to assert that the [Ch][Glu] induces a preferential hydration by weak and non-specific interactions, which leads to a significant stabilisation. On the other hand, under crowding environment, the [Ch][Glu] ion pair is promoted, destabilising the protein by favourable weak hydrophobic interactions , which disrupt the hydration layer of the protein. However, this capability can mitigates the effect of protein crowders. Overall, this work explored the ion-pair existence and its consequences on proteins in conditions similar to cell milieu. In this way, the charged metabolites found in cell can be understood as key for protein stabilisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Providing security to the emerging field of ambient intelligence will be difficult if we rely only on existing techniques, given their dynamic and heterogeneous nature. Moreover, security demands of these systems are expected to grow, as many applications will require accurate context modeling. In this work we propose an enhancement to the reputation systems traditionally deployed for securing these systems. Different anomaly detectors are combined using the immunological paradigm to optimize reputation system performance in response to evolving security requirements. As an example, the experiments show how a combination of detectors based on unsupervised techniques (self-organizing maps and genetic algorithms) can help to significantly reduce the global response time of the reputation system. The proposed solution offers many benefits: scalability, fast response to adversarial activities, ability to detect unknown attacks, high adaptability, and high ability in detecting and confining attacks. For these reasons, we believe that our solution is capable of coping with the dynamism of ambient intelligence systems and the growing requirements of security demands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the synthesis, characterisation and catalytic performance of two nature-inspired biomass-derived electro-catalysts for the oxygen reduction reaction in fuel cells. The catalysts were prepared via pyrolysis of a real food waste (lobster shells) or by mimicking the composition of lobster shells using chitin and CaCO3 particles followed by acid washing. The simplified model of artificial lobster was prepared for better reproducibility. The calcium carbonate in both samples acts as a pore agent, creating increased surface area and pore volume, though considerably higher in artificial lobster samples due to the better homogeneity of the components. Various characterisation techniques revealed the presence of a considerable amount of hydroxyapatite left in the real lobster samples after acid washing and a low content of carbon (23%), nitrogen and sulphur (<1%), limiting the surface area to 23 m2/g, and consequently resulting in rather poor catalytic activity. However, artificial lobster samples, with a surface area of ≈200 m2/g and a nitrogen doping of 2%, showed a promising onset potential, very similar to a commercially available platinum catalyst, with better methanol tolerance, though with lower stability in long time testing over 10,000 s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scheduling is a critical function that is present throughout many industries and applications. A great need exists for developing scheduling approaches that can be applied to a number of different scheduling problems with significant impact on performance of business organizations. A challenge is emerging in the design of scheduling support systems for manufacturing environments where dynamic adaptation and optimization become increasingly important. In this paper, we describe a Self-Optimizing Mechanism for Scheduling System through Nature Inspired Optimization Techniques (NIT).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To comply with natural gas demand growth patterns and Europe´s import dependency, the gas industry needs to organize an efficient upstream infrastructure. The best location of Gas Supply Units – GSUs and the alternative transportation mode – by phisical or virtual pipelines, are the key of a successful industry. In this work we study the optimal location of GSUs, as well as determining the most efficient allocation from gas loads to sources, selecting the best transportation mode, observing specific technical restrictions and minimizing system total costs. For the location of GSUs on system we use the P-median problem, for assigning gas demands nodes to source facilities we use the classical transportation problem. The developed model is an optimisation-based approach, based on a Lagrangean heuristic, using Lagrangean relaxation for P-median problems – Simple Lagrangean Heuristic. The solution of this heuristic can be improved by adding a local search procedure - the Lagrangean Reallocation Heuristic. These two heuristics, Simple Lagrangean and Lagrangean Reallocation, were tested on a realistic network - the primary Iberian natural gas network, organized with 65 nodes, connected by physical and virtual pipelines. Computational results are presented for both approaches, showing the location gas sources and allocation loads arrangement, system total costs and gas transportation mode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Important research effort has been devoted to the topic of optimal planning of distribution systems. The non linear nature of the system, the need to consider a large number of scenarios and the increasing necessity to deal with uncertainties make optimal planning in distribution systems a difficult task. Heuristic techniques approaches have been proposed to deal with these issues, overcoming some of the inherent difficulties of classic methodologies. This paper considers several methodologies used to address planning problems of electrical power distribution networks, namely mixedinteger linear programming (MILP), ant colony algorithms (AC), genetic algorithms (GA), tabu search (TS), branch exchange (BE), simulated annealing (SA) and the Bender´s decomposition deterministic non-linear optimization technique (BD). Adequacy of theses techniques to deal with uncertainties is discussed. The behaviour of each optimization technique is compared from the point of view of the obtained solution and of the methodology performance. The paper presents results of the application of these optimization techniques to a real case of a 10-kV electrical distribution system with 201 nodes that feeds an urban area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Engenharia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do grau de Doutor em Biotecnologia pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia. A presente dissertação foi preparada no âmbito do protocolo de acordo bilateral de educação avançada (ERASMUS) entre a Universidade de Vigo e a Universidade Nova de Lisboa

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a comparison between using global and local optimization techniques for solving the problem of generating human-like arm and hand movements for an anthropomorphic dual arm robot is made. Although the objective function involved in each optimization problem is convex, there is no evidence that the admissible regions of these problems are convex sets. For the sequence of movements for which the numerical tests were done there were no significant differences between the optimal solutions obtained using the global and the local techniques. This suggests that the optimal solution obtained using the local solver is indeed a global solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento (Programa Doutoral em Engenharia Biomédica)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The decision support models in intensive care units are developed to support medical staff in their decision making process. However, the optimization of these models is particularly difficult to apply due to dynamic, complex and multidisciplinary nature. Thus, there is a constant research and development of new algorithms capable of extracting knowledge from large volumes of data, in order to obtain better predictive results than the current algorithms. To test the optimization techniques a case study with real data provided by INTCare project was explored. This data is concerning to extubation cases. In this dataset, several models like Evolutionary Fuzzy Rule Learning, Lazy Learning, Decision Trees and many others were analysed in order to detect early extubation. The hydrids Decision Trees Genetic Algorithm, Supervised Classifier System and KNNAdaptive obtained the most accurate rate 93.2%, 93.1%, 92.97% respectively, thus showing their feasibility to work in a real environment.