932 resultados para Bio medical Applications


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer based wicking structures were fabricated by sintering powders of polycarbonate (PC), ultra-high molecular weight polyethylene and polyamide 12, aiming at selecting a suitable material for an innovative electroencephalography (EEG) bio-electrode. Preliminary experiments showed that PC based wicks displayed the best mechanical properties, therefore more detailed studies were carried out with PC to evaluate the influence of powder granulometry and processing parameters (pressure, temperature and time) on the mechanical properties, porosity, mean pore radius and permeability of the wicks. It was concluded that the mechanical properties are significantly enhanced by increasing the processing time and pressure, although at the expense of a significant decrease of porosity and mean pore diameter (and thus permeability), particularly for the highest applied pressures (74kPa). However, a good compromise between porosity/permeability and mechanical properties could be obtained by sintering PC powders of particle sizes below 500μm at 165°C for 5min, upon an applied pressure of 56kPa. Moreover, PC proved to be chemically stable in contact with an EEG common used disinfectant. Thus, wicking structures with appropriate properties for the fabrication of reusable bio-electrodes could be fabricated from the sintering of PC powders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large group of low molecular weight natural compounds that exhibit antimicrobial activity has been isolated from animals and plants during the past two decades. Among them, peptides are the most widespread resulting in a new generation of antimicrobial agents with higher specific activity. In the present study we have developed a new strategy to obtain antimicrobial wound-dressings based on the incorporation of antimicrobial peptides into polyelectrolyte multilayer films built by the alternate deposition of polycation (chitosan) and polyanion (alginic acid sodium salt) over cotton gauzes. Energy dispersive X ray microanalysis technique was used to determine if antimicrobial peptides penetrated within the films. FTIR analysis was performed to assess the chemical linkages, and antimicrobial assays were performed with two strains: Staphylococcus aureus (Gram-positive bacterium) and Klebsiella pneumonia (Gram-negative bacterium). Results showed that all antimicrobial peptides used in this work have provided a higher antimicrobial effect (in the range of 4 log–6 log reduction) for both microorganisms, in comparison with the controls, and are non-cytotoxic to normal human dermal fibroblasts at the concentrations tested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue engineering has been defined as an interdisciplinary field that applies the principles of engineering and life sciences for the development of biological substitutes to restore, maintain or improve tissue function. This area is always looking for new classes of degradable biopolymers that are biocompatible and whose activities are controllable and specific, more likely to be used as cell scaffolds, or in vitro tissue reconstruction. In this paper, we developed a novel bionanocomposite with homogeneous porous distribution and prospective natural antimicrobial properties by electrospinning technique using Stryphodedron barbatimao extract (Barbatimão). SEM images showed equally distribution of nanofibres. DSC and TGA showed higher thermal properties and change crystallinity of the developed bionanocomposite mainly because these structural modification. © 2012 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the report for “Project IV” unit of the PhD programme on Technology Assessment (Doctoral Conference) at Universidade Nova de Lisboa (December 2011). This thesis research has the supervision of António Moniz (FCT-UNL and ITAS-KIT) and Armin Grunwald (Karlsruhe Institute of Technology-ITAS, Germany). Other members of the thesis committee are Mário Forjaz Secca (FCT-UNL) and Femke Nijboer (University of Twente, Netherlands).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review aims to provide good quality, up-to-date biomedical evidence of the therapies available to women in Ireland to treat breast, cervical and ovarian cancer. This review summarises evidence from guidelines and high quality studies. It should be noted however that scientific evidence is not infallible, and knowledge in this field is constantly evolving. The evidence summarised in this review presents the current consensus. Download document here   Download summary of report

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infertility Treatments for Women: A Review of the Bio-medical Evidence Click here to download PDF 1.5mb Summary of Report PDF 971kb

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shape memory alloys (SMA) are materials that have the ability to return to a former shape when subjected to an appropriate thermomechanical procedure. Pseudoelastic and shape memory effects are some of the behaviors presented by these alloys. The unique properties concerning these alloys have encouraged many investigators to look for applications of SMA in different fields of human knowledge. The purpose of this review article is to present a brief discussion of the thermomechanical behavior of SMA and to describe their most promising applications in the biomedical area. These include cardiovascular and orthopedic uses, and surgical instruments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare-earth based upconverting nanoparticles (UCNPs) have attracted much attention due to their unique luminescent properties. The ability to convert multiple photons of lower energy to ones with higher energy through an upconversion (UC) process offers a wide range of applications for UCNPs. The emission intensities and wavelengths of UCNPs are important performance characteristics, which determine the appropriate applications. However, insufficient intensities still limit the use of UCNPs; especially the efficient emission of blue and ultraviolet (UV) light via upconversion remains challenging, as these events require three or more near-infrared (NIR) photons. The aim of the study was to enhance the blue and UV upconversion emission intensities of Tm3+ doped NaYF4 nanoparticles and to demonstrate their utility in in vitro diagnostics. As the distance between the sensitizer and the activator significantly affect the energy transfer efficiency, different strategies were explored to change the local symmetry around the doped lanthanides. One important strategy is the intentional co-doping of active (participate in energy transfer) or passive (do not participate in energy transfer) impurities into the host matrix. The roles of doped passive impurities (K+ and Sc3+) in enhancing the blue and UV upconversions, as well as in influencing the intense UV upconversion emission through excess sensitization (active impurity) were studied. Additionally, the effects of both active and passive impurity doping on the morphological and optical performance of UCNPs were investigated. The applicability of UV emitting UCNPs as an internal light source for glucose sensing in a dry chemistry test strip was demonstrated. The measurements were in agreement with the traditional method based on reflectance measurements using an external UV light source. The use of UCNPs in the glucose test strip offers an alternative detection method with advantages such as control signals for minimizing errors and high penetration of the NIR excitation through the blood sample, which gives more freedom for designing the optical setup. In bioimaging, the excitation of the UCNPs in the transparent IR region of the tissue permits measurements, which are free of background fluorescence and have a high signal-to-background ratio. In addition, the narrow emission bandwidth of the UCNPs enables multiplexed detections. An array-in-well immunoassay was developed using two different UC emission colours. The differentiation between different viral infections and the classification of antibody responses were achieved based on both the position and colour of the signal. The study demonstrates the potential of spectral and spatial multiplexing in the imaging based array-in-well assays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydroxyapatite (HAp, Ca10(PO4)6(OH)2) bioceramic and chitosan (poly [( -1-4) D-glucosamine]) biopolymer show good biocompatibility in vivo. They have biological origin and show excellent interactions with microwave. Microwave study of HAp made using different drying techniques and their composites with chitosan in the ISM band is presented. Pastes are made using HAp and chitosan with different ratios of mixing. The dielectric properties of this composites match with that of human fat, collagen tissues. Some of the compositions exhibit dielectric property close to that of natural bone. This makes them more biocompatible and better substitutes for natural bone. Thus composite bioceramics can be considered as phantom model constituents for imaging purposes. Their dielectric properties prove that they are biocompatible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluorescence is a powerful tool in biological research, the relevance of which relies greatly on the availability of sensitive and selective fluorescent probes. Nanometer sized fluorescent semiconductor materials have attracted considerable attention in recent years due to the high luminescence intensity, low photobleaching, large Stokes’ shift and high photochemical stability. The optical and spectroscopic features of nanoparticles make them very convincing alternatives to traditional fluorophores in a range of applications. Efficient surface capping agents make these nanocrystals bio-compatible. They can provide a novel platform on which many biomolecules such as DNA, RNA and proteins can be covalently linked. In the second phase of the present work, bio-compatible, fluorescent, manganese doped ZnS (ZnS:Mn) nanocrystals suitable for bioimaging applications have been developed and their cytocompatibility has been assessed. Functionalization of ZnS:Mn nanocrystals by safe materials results in considerable reduction of toxicity and allows conjugation with specific biomolecules. The highly fluorescent, bio-compatible and water- dispersible ZnS:Mn nanocrystals are found to be ideal fluorescent probes for biological labeling

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optische Spektroskopie ist eine sehr wichtige Messtechnik mit einem hohen Potential für zahlreiche Anwendungen in der Industrie und Wissenschaft. Kostengünstige und miniaturisierte Spektrometer z.B. werden besonders für moderne Sensorsysteme “smart personal environments” benötigt, die vor allem in der Energietechnik, Messtechnik, Sicherheitstechnik (safety and security), IT und Medizintechnik verwendet werden. Unter allen miniaturisierten Spektrometern ist eines der attraktivsten Miniaturisierungsverfahren das Fabry Pérot Filter. Bei diesem Verfahren kann die Kombination von einem Fabry Pérot (FP) Filterarray und einem Detektorarray als Mikrospektrometer funktionieren. Jeder Detektor entspricht einem einzelnen Filter, um ein sehr schmales Band von Wellenlängen, die durch das Filter durchgelassen werden, zu detektieren. Ein Array von FP-Filter wird eingesetzt, bei dem jeder Filter eine unterschiedliche spektrale Filterlinie auswählt. Die spektrale Position jedes Bandes der Wellenlänge wird durch die einzelnen Kavitätshöhe des Filters definiert. Die Arrays wurden mit Filtergrößen, die nur durch die Array-Dimension der einzelnen Detektoren begrenzt werden, entwickelt. Allerdings erfordern die bestehenden Fabry Pérot Filter-Mikrospektrometer komplizierte Fertigungsschritte für die Strukturierung der 3D-Filter-Kavitäten mit unterschiedlichen Höhen, die nicht kosteneffizient für eine industrielle Fertigung sind. Um die Kosten bei Aufrechterhaltung der herausragenden Vorteile der FP-Filter-Struktur zu reduzieren, wird eine neue Methode zur Herstellung der miniaturisierten FP-Filtern mittels NanoImprint Technologie entwickelt und präsentiert. In diesem Fall werden die mehreren Kavitäten-Herstellungsschritte durch einen einzigen Schritt ersetzt, die hohe vertikale Auflösung der 3D NanoImprint Technologie verwendet. Seit dem die NanoImprint Technologie verwendet wird, wird das auf FP Filters basierende miniaturisierte Spectrometer nanospectrometer genannt. Ein statischer Nano-Spektrometer besteht aus einem statischen FP-Filterarray auf einem Detektorarray (siehe Abb. 1). Jeder FP-Filter im Array besteht aus dem unteren Distributed Bragg Reflector (DBR), einer Resonanz-Kavität und einen oberen DBR. Der obere und untere DBR sind identisch und bestehen aus periodisch abwechselnden dünnen dielektrischen Schichten von Materialien mit hohem und niedrigem Brechungsindex. Die optischen Schichten jeder dielektrischen Dünnfilmschicht, die in dem DBR enthalten sind, entsprechen einen Viertel der Design-Wellenlänge. Jeder FP-Filter wird einer definierten Fläche des Detektorarrays zugeordnet. Dieser Bereich kann aus einzelnen Detektorelementen oder deren Gruppen enthalten. Daher werden die Seitenkanal-Geometrien der Kavität aufgebaut, die dem Detektor entsprechen. Die seitlichen und vertikalen Dimensionen der Kavität werden genau durch 3D NanoImprint Technologie aufgebaut. Die Kavitäten haben Unterschiede von wenigem Nanometer in der vertikalen Richtung. Die Präzision der Kavität in der vertikalen Richtung ist ein wichtiger Faktor, der die Genauigkeit der spektralen Position und Durchlässigkeit des Filters Transmissionslinie beeinflusst.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of the most common chelators used in magnetic resonance imaging ( MRI) and in radiopharmaceuticals for medical diagnosis and tumour therapy, H(4)dota, H(4)teta, H(8)dotp and H(8)tetp, is examined from a chemical point of view. Differences between 12- and 14-membered tetraazamacrocyclic derivatives with methylcarboxylate and methylphosphonate pendant arms and their chelates with divalent first-series transition metal and trivalent lanthanide ions are discussed on the basis of their thermodynamic stability constants, X- ray structures and theoretical studies.