914 resultados para Binary forms
Resumo:
In this paper, we obtain quantitative estimates for the asymptotic density of subsets of the integer lattice Z2 that contain only trivial solutions to an additive equation involving binary forms. In the process we develop an analogue of Vinogradov’s mean value theorem applicable to binary forms.
Resumo:
Cremona developed a reduction theory for binary forms of degree 3 and 4 with integer coefficients, the motivation in the case of quartics being to improve 2-descent algorithms for elliptic curves over Q. In this paper we extend some of these results to forms of higher degree. One application of this is to the study of hyperelliptic curves.
Resumo:
This work is a MATLAB/Simulink model of a controller for a three-phase, four-wire, grid-interactive inverter. The model provides capacity for simulating the performance of power electroinic hardware, as well as code generation for an embedded controller. The implemented hardware topology is a three-leg bridge with a neutral connection to the centre-tap of the DC bus. An LQR-based current controller and MAF-based phase detector are implemented. The model is configured for code generation for a Texas Instruments TMS320F28335 Digital Signal Processor (DSP).
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
2000 Mathematics Subject Classification: 13N15, 13A50, 16W25.
Resumo:
Antonio Salieri’s La calamita de’ cuori (1774) warrants musicological attention for what it can tell us about Salieri’s compositional craft and what it reveals about the development of form in Viennese Italian-language comic opera of the mid- and late-eighteenth century. In Part I of this dissertation, I explore the performance history of La calamita, present the first plot synopsis and English translation of the libretto, and describe the variants between Carlo Goldoni’s 1752 libretto and the revised version created for Salieri’s opera. I have collated Salieri’s holograph score, Österreichische Nationalbibliothek, Vienna, Mus. Hs. 16.508, with four copies having different relationships to it, and I propose a stemma that represents the relationships between these five sources. The analyses in Part II contribute to our understanding of formal practices in eighteenth-century drammi giocosi. My study of Salieri’s La calamita reveals his reliance on a clearly defined binary structure, referred to in this dissertation as “operatic binary form,” in almost half of the arias, ensembles, and instrumental movements of this opera. Salieri’s consistent use of operatic binary form led me to explore its use in drammi giocosi by other prominent composers of this time, including Baldassare Galuppi’s La calamita de’ cuori (1752), Wolfgang Amadeus Mozart’s Il dissoluto punito, ossia Il Don Giovanni (1787), and selected arias by Pasquale Anfossi, Florian Leopold Gassmann, Giuseppe Gazzaniga, Franz Joseph Haydn, Giovanni Paisiello, and Niccolò Piccinni dating from 1760 to 1774. This study showed that Salieri and his peers adhered to a recognizable tonal plan and set of design elements in their operatic binary forms, and that their arias fall into three distinct categories defined by the tonality at the beginning of the second half of the binary structure. The analysis presented here adds to our present understanding of operatic form in mid- and late-century drammi giocosi and shows that in La calamita de’ cuori, Salieri was following the normative formal procedures of his time.
Resumo:
The author's thesis (Ph.D.)--University of California, 1913.
Resumo:
Binary Ti vectors are the plasmid vectors of choice in Agrobacterium-mediated plant transformation protocols. The pGreen series of binary Ti vectors are configured for ease-of-use and to meet the demands of a wide range of transformation procedures for many plant species. This plasmid system allows any arrangement of selectable marker and reporter gene at the right and left T-DNA borders without compromising the choice of restriction sites for cloning, since the pGreen cloning sites are based on the well-known pBluescript general vector plasmids. Its size and copy number in Escherichia coli offers increased efficiencies in routine in vitro recombination procedures. pGreen can replicate in Agrobacterium only if another plasmid, pSoup, is co-resident in the same strain. pSoup provides replication functions in trans for pGreen. The removal of RepA and Mob functions has enabled the size of pGreen to be kept to a minimum. Versions of pGreen have been used to transform several plant species with the same efficiencies as other binary Ti vectors. Information on the pGreen plasmid system is supplemented by an Internet site (http://www.pgreen.ac.uk) through which comprehensive information, protocols, order forms and lists of different pGreen marker gene permutations can be found.
Resumo:
The number of drug substances in formulation development in the pharmaceutical industry is increasing. Some of these are amorphous drugs and have glass transition below ambient temperature, and thus they are usually difficult to formulate and handle. One reason for this is the reduced viscosity, related to the stickiness of the drug, that makes them complicated to handle in unit operations. Thus, the aim in this thesis was to develop a new processing method for a sticky amorphous model material. Furthermore, model materials were characterised before and after formulation, using several characterisation methods, to understand more precisely the prerequisites for physical stability of amorphous state against crystallisation. The model materials used were monoclinic paracetamol and citric acid anhydrate. Amorphous materials were prepared by melt quenching or by ethanol evaporation methods. The melt blends were found to have slightly higher viscosity than the ethanol evaporated materials. However, melt produced materials crystallised more easily upon consecutive shearing than ethanol evaporated materials. The only material that did not crystallise during shearing was a 50/50 (w/w, %) blend regardless of the preparation method and it was physically stable at least two years in dry conditions. Shearing at varying temperatures was established to measure the physical stability of amorphous materials in processing and storage conditions. The actual physical stability of the blends was better than the pure amorphous materials at ambient temperature. Molecular mobility was not related to the physical stability of the amorphous blends, observed as crystallisation. Molecular mobility of the 50/50 blend derived from a spectral linewidth as a function of temperature using solid state NMR correlated better with the molecular mobility derived from a rheometer than that of differential scanning calorimetry data. Based on the results obtained, the effect of molecular interactions, thermodynamic driving force and miscibility of the blends are discussed as the key factors to stabilise the blends. The stickiness was found to be affected glass transition and viscosity. Ultrasound extrusion and cutting were successfully tested to increase the processability of sticky material. Furthermore, it was found to be possible to process the physically stable 50/50 blend in a supercooled liquid state instead of a glassy state. The method was not found to accelerate the crystallisation. This may open up new possibilities to process amorphous materials that are otherwise impossible to manufacture into solid dosage forms.
Resumo:
It is well known that the notions of normal forms and acyclicity capture many practical desirable properties for database schemes. The basic schema design problem is to develop design methodologies that strive toward these ideals. The usual approach is to first normalize the database scheme as far as possible. If the resulting scheme is cyclic, then one tries to transform it into an acyclic scheme. In this paper, we argue in favor of carrying out these two phases of design concurrently. In order to do this efficiently, we need to be able to incrementally analyze the acyclicity status of a database scheme as it is being designed. To this end, we propose the formalism of "binary decompositions". Using this, we characterize design sequences that exactly generate theta-acyclic schemes, for theta = agr,beta. We then show how our results can be put to use in database design. Finally, we also show that our formalism above can be effectively used as a proof tool in dependency theory. We demonstrate its power by showing that it leads to a significant simplification of the proofs of some previous results connecting sets of multivalued dependencies and acyclic join dependencies.
Resumo:
The solid phase formed by a binary mixture of oppositely charged colloidal particles can be either substitutionally ordered or substitutionally disordered depending on the nature and strength of interactions among the particles. In this work, we use Monte Carlo molecular simulations along with the Gibbs-Duhem integration technique to map out the favorable inter-particle interactions for the formation of substitutionally ordered crystalline phases from a fluid phase. The inter-particle interactions are modeled using the hard core Yukawa potential but the method can be easily extended to other systems of interest. The study obtains a map of interactions depicting regions indicating the type of the crystalline aggregate that forms upon phase transition.
Resumo:
Raman spectra of the ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]), 1-hexyl-3-methylimidazolium chloride ([C(6)mim]Cl), and 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)mim][PF(6)]), and binary mixtures thereof, have been assigned using ab initio MP2 calculations. The previously reported anti and gauche forms of the [C(4)mim](+) cation have been observed, and this study reveals this to be a general feature of the long-chain I-alkyl derivatives. Analysis of mixtures Of [C(6)mim]Cl and [C(6)mim][PF(6)] has provided information on the nature of the hydrogen bonding between the imidazolium headgroup and the anions, and the invariance of the essentially 50:50 mixture of the predominant conformers informs on the nature of glass formation in these systems.
Resumo:
The ionic liquid (2-hydroxyethylammonium)trimethylammonium) bis(trifluoromethylsulfonyl)imide (choline bistriflimide) was obtained as a supercooled liquid at room temperature (melting point = 30 degrees C). Crystals of choline bistriflimide suitable for structure determination were grown from the melt in situ on the X-ray diffractometer. The choline cation adopts a folded conformation, whereas the bistriflimide anion exhibits a transoid conformation. The choline cation and the bistriflimide anion are held together by hydrogen bonds between the hydroxyl proton and a sulfonyl oxygen atom. This hydrogen bonding is of importance for the temperature-dependent solubility proper-ties of the ionic liquid. Choline bistriflimide is not miscible with water at room temperature, but forms one phase with water at temperatures above 72 degrees C (equals upper critical solution temperature). H-1 NMR studies show that the hydrogen bonds between the choline cation and the bistriflimide anion are substantially weakened above this temperature. The thermophysical properties of water-choline bistriflimide binary mixtures were furthermore studied by a photopyroelectric technique and by adiabatic scanning calorimetry (ASC). By photothermal analysis, besides highly accurate values for the thermal conductivity and effusivity of choline bistriflimide at 30 degrees C, the detailed temperature dependence of both the thermal conductivity and effusivity of the upper and lower part of a critical water-choline bistriflimide mixture in the neighborhood of the mixing-demixing phase transition could be determined with high resolution and accuracy. Together with high resolution ASC data for the heat capacity, experimental values were obtained for the critical exponents alpha and beta, and for the critical amplitude ratio G(+)/G(-). These three values were found to be consistent with theoretical expectations for a three dimensional Ising-type of critical behavior of binary liquid mixtures.
Resumo:
This paper examines relationships between religion and two forms of homonegativity
across 43 European countries using a bivariate response binary logistic multilevel model. The model analyzes effects of religious believing, belonging and practice on two response variables: a) a moral rejection of homosexuality as a practice and b) intolerance toward homosexuals as a group. The findings indicate that both forms of homonegativity are prevalent in Europe. Traditional doctrinal religious believing (belief in a personal God) is positively related to a moral rejection of homosexuality but to a much lesser extent associated with intolerance toward homosexuals as a group. Members of religious denominations are more likely than non-members to reject homosexuality as morally wrong and to reject homosexuals as neighbors. The analysis found significant differences between denominations that are likely context-dependent. Attendance at religious services is positively related to homonegativity in a majority of countries. The findings vary considerably across countries: Religion is more strongly related to homonegativity in Western than in Eastern Europe. In the post-soviet countries homonegativity appears to be largely a secular phenomenon. National contexts of high religiosity, high perceived government corruption, high income inequality and shortcomings in the implementation of gay rights in the countries’ legislations are statistically related to higher levels of both moralistic homonegativity and intolerance toward homosexuals as a group.
Resumo:
The biosorption process of anionic dye Alizarin Red S (ARS) and cationic dye methylene blue (MB) as a function of contact time, initial concentration and solution pH onto olive stone (OS) biomass has been investigated. Equilibrium biosorption isotherms in single and binary systems and kinetics in batch mode were also examined. The kinetic data of the two dyes were better described by the pseudo second-order model. At low concentration, ARS dye appeared to follow a two-step diffusion process, while MB dye followed a three-step diffusion process. The biosorption experimental data for ARS and MB dyes were well suited to the Redlich-Peterson isotherm. The maximum biosorption of ARS dye, qmax = 16.10 mg/g, was obtained at pH 3.28 and the maximum biosorption of MB dye, qmax = 13.20 mg/g, was observed at basic pH values. In the binary system, it was indicated that the MB dye diffuses firstly inside the biosorbent particle and occupies the biosorption sites forming a monodentate complex and then the ARS dye enters and can only bind to untaken sites; forms a tridentate complex with OS active sites.