984 resultados para Bimetallic nanostructures


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrodeposition of novel Au/Pd bimetallic nanostructures with dendrimer films as matrices has been reported. The dendrimers exhibited highly open structures arising from protonation of amines and this made them have good penetrability for solvent molecules. The unique properties of dendrimers obviously affected the morphologies and compositions of deposited bimetallic nanostructures compared with those from unmodified surfaces. Field-emitted scanning electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectroscopy and UV-vis spectroscopy were used to characterize these nanostructures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel silver-gold bimetallic nanostructures were prepared by seeding with silver nanoplates in the absence of any surfactants. During the synthesis process, it was found that the frameworks of silver nanoplates were normally kept though the basal plane of silver nanoplates became rugged. The real morphology of these nanostructures depended on the molar ratio of gold ions to the seed particles. When the molar ratio of gold ions to silver atoms increased from 0.5 to 4, porous or branched silver-gold bimetallic nanostructures could be made. The growth mechanism was qualitatively discussed based on template-engaged replacement reactions and seed-mediated deposition reactions. Due to the unusual structures, they exhibited interesting optical properties. Moreover, they were shown to be an active substrate for surface-enhanced Raman scattering measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface-enhanced Raman scattering (SERS) activity of silver-gold bimetallic nanostructures (a mean diameter of similar to 100 nm) with hollow interiors was checked using p-aminothiophenol (p-ATP) as a probe molecule at both visible light (514.5 nm) and near-infrared (1064 nm) excitation. Evident Raman peaks of p-ATP were clearly observed, indicating the enhancement Raman scattering activity of the hollow nanostructure to p-ATP. The enhancement factors (EF) at the hollow nanostructures were obtained to be as large as (0.8 +/- 0.3)x10(6) and (2.7 +/- 0.5)x10(8) for 7a and 19b (b(2)) vibration mode, respectively, which was 30-40 times larger than that at silver nanoparticles with solid interiors at 514.5 nm excitation. EF values were also obtained at 1064 nm excitation for 7a and b(2)-type vibration mode, which were estimated to be as large as (1.0 +/- 0.3)x10(6) and (0.9 +/- 0.2)x10(7), respectively. The additional EF values by a factor of similar to 10 for b(2)-type band were assumed to be due to the chemical effect. Large electromagnetic EF values were presumed to derive from a strong localized plasmas electromagnetic field existed at the hollow nanostructures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One-pot preparation of shell-type silver-gold bimetallic nanostructures with hollow interiors and bearing nanospikes, based on colloid seed-engaged replacement reaction and colloid-mediated deposition reactions, has been reported. Heating-induced evolution of Ag-Au bimetallic nanoshells can lead to spontaneous production of nanospikes on the colloid surface. The hollow interior structure and bimetallic nature of the as-prepared colloids are characterized by transmission electron microscopy (TEM), UV-vis spectroscopy, and X-ray photoelectron spectroscopy (XPS).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We demonstrate potential applications for unusual dendrite like Au–Ag alloy nanoparticles formed via a galvanic replacement reaction in the ionic liquid [BMIM][BF4]. In comparison to Au–Ag alloy nanoshells synthesised via a similar reaction in water, the unusual branched structure of the dendritic materials led to increased electrocatalytic activity for the oxidation of both formaldehyde and hydrazine, and increased sensitivity and spectral resolution for the surface enhanced Raman scattering (SERS) of 4,4-bipyridal.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Au-Pt bimetallic nanoparticles (NPs) were synthesized by reducing the mixture of HAuCl4 and K2PtCl6 with ethanol in the presence of cinnamic acid (C6H5CHCHCO2H, CA) through a thermal process. It was found that the isolated NPs could gradually self-assemble into chain-like structures, ultimately to 3-dimensional network nanostructures by adjusting the molar ratio of CA to K2PtCl6. Energy-dispersive Spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction was used to confirm the formation of Au-Pt bimetallic nanostructures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Various metallized nanostructures (such as rings, wires with controllable lengths, spheres) have been successfully fabricated by coating metallic nanolayers onto soft nanotemplates through simple electroless methods. In particular, bimetallic nanostructures have been obtained by using simple methods. The multiple functional polymeric nanostructures, were obtained through the self-assembly of polystyrene/poly(4-vinyl pyridine) triblock copolymer (P4VP-b-PS-b-P4VP) in selective media by changing the common solvent properties. By combining field emission scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) characterization, it was confirmed that polymer/metal and bimetallic (Au@Ag) core-shell nanostructures could be achieved by chemical metal deposition method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Au-Pt bimetallic nanoparticles (NPs) were synthesized by reducing the mixture of HAuCl4 and K2PtCl6 with ethanol in the presence of cinnamic acid (C6H5CHCHCO2H, CA) through a thermal process. It was found that the isolated NPs could gradually self-assemble into chain-like structures, ultimately to 3-dimensional network nanostructures by adjusting the molar ratio of CA to K2PtCl6. Energy-dispersive Spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction was used to confirm the formation of Au-Pt bimetallic nanostructures. It was worthwhile noting that the bimetallic NPs with the novel structures prepared by our method exhibited an attractive catalytic activity for the hydrogen evolution reaction in an acidic solution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrochemical formation of nanostructured materials is generally achieved by reduction of a metal salt onto a substrate that does not influence the composition of the deposit. In this work we report that Ag, Au and Pd electrodeposited onto Cu under conditions where galvanic replacement is not viable and hydrogen gas is evolved results in the formation of nanostructured surfaces that unexpectedly incorporate a high concentration of Cu in the final material. Under cathodic polarization conditions the electrodissolution/corrosion of Cu occurs which provides a source of ionic copper that is reduced at the surface-electrolyte interface. The nanostructured Cu/M (M = Ag, Au and Pd) surfaces are investigated for their catalytic activity for the reduction of 4 nitrophenol by NaBH4 where Cu/Ag was found to be extremely active. This work indicates that a substrate electrode can be utilized in an interesting manner t make bimetallic nanostructures with enhanced catalytic activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Digestive ripening, a postsynthetic treatment of colloidal nanoparticles, is a versatile method to produce monodisperse nanoparticles and to prepare various bimetallic nanostructures. The mechanism of this process is largely unknown. Herein, we present a systematic study conducted using Au nanoparticles prepared by a solvated metal atom dispersion method to probe the mechanistic aspects of digestive ripening. In our study, experimental conditions such as concentration of capping agent, reaction time, and temperature, were found to influence the course of the digestive ripening process. Here it is shown that, during digestive ripening under reflux, nanoparticles within an optimum size window are conserved, and surface etching facilitated mass transfer resulted in monodisperse nanoparticles. Overall, digestive ripening can be considered as a kinetically controlled thermodynamic process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Au-Pt core-shell nanoparticles were prepared on glass surface by a seed growth method. Gold nanoparticles were used as seeds and ascorbic acid-H2PtCL6 solutions as growth solutions to deposit Pt shell on the surface of gold nanoparticles. These core-shell nanoparticles and their growth process were examined by UV-Vis spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy and field-emission environmental scanning electron microscopy and the results indicated that the deposition speed was fast and nanoparticles with obvious core-shell structure could be obtained after 2 min. Moreover, this seed growth method for preparation of the core-shell nanoparticles is simple and convenient compared with other seed growth methods with NH4OH as a mild reductant. In addition, electrochemical experiments indicated that these Au-Pt core-shell nanoparticles had similar electrochemical properties to those of the bulk Pt electrode.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymer Optical Fibers have occupied historically a place for large core flexible fibers operating in short distances. In addition to their practical passive application in short-haul communication they constitute a potential research field as active devices with organic dopants. Organic dyes are preferred as dopants over organic semiconductors due to their higher optical cross section. Thus organic dyes as gain media in a polymer fiber is used to develop efficient and narrow laser sources with a tunability throughout the visible region or optical amplifier with high gain. Dyes incorporated in fiber form has added advantage over other solid state forms such as films since the pump power required to excite the molecules in the core of the fiber is less thereby utilising the pump power effectively. In 1987, Muto et.al investigated a dye doped step index polymer fiber laser. Afterwards, numerous researches have been carried out in this area demonstrating laser emission from step index, graded index and hollow optical fibers incorporating various dyes. Among various dyes, Rhodamine6G is the most widely and commonly used laser dye for the last four decades. Rhodamine6G has many desirable optical properties which make it preferable over other organic dyes such as Coumarin, Nile Blue, Curcumin etc. The research focus on the implementation of efficient fiber lasers and amplifiers for short fiber distances. Developing efficient plastic lasers with electrical pumping can be a new proposal in this field which demands lowest possible threshold pump energy of the gain medium in the cavity as an important parameter. One way of improving the efficiency of the lasers, through low threshold pump energy, is by modifying the gain of the amplifiers in the resonator/cavity. Success in the field of Radiative Decay Engineering can pave way to this problem. Laser gain media consisting of dye-nanoparticle composites can improve the efficiency by lowering the lasing threshold and enhancing the photostability. The electric field confined near the surface of metal nanoparticles due to Localized Surface Plasmon Resonance can be very effective for the excitation of active centers to impart high optical gain for lasing. Since the Surface Plasmon Resonance of nanoparticles of gold and silver lies in the visible range, it can affect the spectral emission characteristics of organic dyes such as Rhodamine6G through plasmon field generated by the particles. The change in emission of the dye placed near metal nanoparticles depend on plasmon field strength which in turn depends on the type of metal, size of nanoparticle, surface modification of the particle and the wavelength of incident light. Progress in fabrication of different types of nanostructures lead to the advent of nanospheres, nanoalloys, core-shell and nanowires to name a few. The thesis deals with the fabrication and characterisation of polymer optical fibers with various metallic and bimetallic nanostructures incorporated in the gain media for efficient fiber lasers with low threshold and improved photostability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An in situ seeding growth methodology towards the preparation of core-shell nanoparticles composed of noble metals has been developed by employing trimethylamine borane (TMAB) as the reducing agent. Being a weak reducing agent, TMAB is able to distinguish the smallest reduction potential window of any two metals which renders selective reduction of metal ions thus affording a core-shell architecture of the nanoparticles. A dramatic effect of solvent was noted during the reduction of Ag+ ions: an immediate reduction took place at room temperature when dry THF was used as solvent however, usage of wet THF (THF used directly from the bottle) brings out the reduction only at reflux conditions. In the case of Au and Pd nanoparticles, preparation was found to be independent of the quality of solvent used. Au nanoparticles are realized at room temperature whereas reflux conditions are required in the case of Pd nanoparticles. This difference in behavior of the monometallic nanoparticles was successfully exploited to construct different noble metal nanoparticles with core-shell architectures such as Au@Ag, Ag@Au, and Ag@Pd. Transformation of these core-shell nanoparticles to their thermodynamically stable alloy counterparts is also demonstrated under very mild conditions reported to date.