996 resultados para Bilateral Shapley Value
Resumo:
We propose a simple mechanism that implements the Ordinal Shapley Value (Pérez-Castrillo and Wettstein [2005]) for economies with three or less agents.
Resumo:
We propose a new solution concept to address the problem of sharing a surplus among the agents generating it. The problem is formulated in the preferences-endowments space. The solution is defined recursively, incorporating notions of consistency and fairness and relying on properties satisfied by the Shapley value for Transferable Utility (TU) games. We show a solution exists, and call it the Ordinal Shapley value (OSV). We characterize the OSV using the notion of coalitional dividends, and furthermore show it is monotone and anonymous. Finally, similarly to the weighted Shapely value for TU games, we construct a weighted OSV as well.
Resumo:
We propose a new solution concept to address the problem of sharing a surplus among the agents generating it. The sharing problem is formulated in the preferences-endowments space. The solution is defined in a recursive manner incorporating notions of consistency and fairness and relying on properties satisfied by the Shapley value for Transferable Utility (TU) games. We show a solution exists, and refer to it as an Ordinal Shapley value (OSV). The OSV associates with each problem an allocation as well as a matrix of concessions ``measuring'' the gains each agent foregoes in favor of the other agents. We analyze the structure of the concessions, and show they are unique and symmetric. Next we characterize the OSV using the notion of coalitional dividends, and furthermore show it is monotone in an agent's initial endowments and satisfies anonymity. Finally, similarly to the weighted Shapley value for TU games, we construct a weighted OSV as well.
Resumo:
We present parallel characterizations of two different values in the framework of restricted cooperation games. The restrictions are introduced as a finite sequence of partitions defined on the player set, each of them being coarser than the previous one, hence forming a structure of different levels of a priori unions. On the one hand, we consider a value first introduced in Ref. [18], which extends the Shapley value to games with different levels of a priori unions. On the other hand, we introduce another solution for the same type of games, which extends the Banzhaf value in the same manner. We characterize these two values using logically comparable properties.
Resumo:
In this paper shortest path games are considered. The transportation of a good in a network has costs and benet too. The problem is to divide the prot of the transportation among the players. Fragnelli et al (2000) introduce the class of shortest path games, which coincides with the class of monotone games. They also give a characterization of the Shapley value on this class of games. In this paper we consider further four characterizations of the Shapley value (Shapley (1953)'s, Young (1985)'s, Chun (1989)'s, and van den Brink (2001)'s axiomatizations), and conclude that all the mentioned axiomatizations are valid for shortest path games. Fragnelli et al (2000)'s axioms are based on the graph behind the problem, in this paper we do not consider graph specic axioms, we take TU axioms only, that is, we consider all shortest path problems and we take the view of abstract decision maker who focuses rather on the abstract problem than on the concrete situations.
Resumo:
In this paper cost sharing problems are considered. We focus on problems given by rooted trees, we call these problems cost-tree problems, and on the induced transferable utility cooperative games, called irrigation games. A formal notion of irrigation games is introduced, and the characterization of the class of these games is provided. The well-known class of airport games Littlechild and Thompson (1977) is a subclass of irrigation games. The Shapley value Shapley (1953) is probably the most popular solution concept for transferable utility cooperative games. Dubey (1982) and Moulin and Shenker (1992) show respectively, that Shapley's Shapley (1953) and Young (1985)'s axiomatizations of the Shapley value are valid on the class of airport games. In this paper we show that Dubey (1982)'s and Moulin and Shenker (1992)'s results can be proved by applying Shapley (1953)'s and Young (1985)'s proofs, that is those results are direct consequences of Shapley (1953)'s and Young (1985)'s results. Furthermore, we extend Dubey (1982)'s and Moulin and Shenker (1992)'s results to the class of irrigation games, that is we provide two characterizations of the Shapley value for cost sharing problems given by rooted trees. We also note that for irrigation games the Shapley value is always stable, that is it is always in the core Gillies (1959).
Resumo:
In this paper shortest path games are considered. The transportation of a good in a network has costs and benet too. The problem is to divide the prot of the transportation among the players. Fragnelli et al (2000) introduce the class of shortest path games, which coincides with the class of monotone games. They also give a characterization of the Shapley value on this class of games. In this paper we consider further four characterizations of the Shapley value (Shapley (1953)'s, Young (1985)'s, Chun (1989)'s, and van den Brink (2001)'s axiomatizations), and conclude that all the mentioned axiomatizations are valid for shortest path games. Fragnelli et al (2000)'s axioms are based on the graph behind the problem, in this paper we do not consider graph specic axioms, we take TU axioms only, that is, we consider all shortest path problems and we take the view of abstract decision maker who focuses rather on the abstract problem than on the concrete situations.
Resumo:
We consider the problem of axiomatizing the Shapley value on the class of assignment games. We first show that several axiomatizations of the Shapley value on the class of all TU-games do not characterize this solution on the class of assignment games by providing alternative solutions that satisfy these axioms. However, when considering an assignment game as a communication graph game where the game is simply the assignment game and the graph is a corresponding bipartite graph buyers are connected with sellers only, we show that Myerson's component efficiency and fairness axioms do characterize the Shapley value on the class of assignment games. Moreover, these two axioms have a natural interpretation for assignment games. Component efficiency yields submarket efficiency stating that the sum of the payoffs of all players in a submarket equals the worth of that submarket, where a submarket is a set of buyers and sellers such that all buyers in this set have zero valuation for the goods offered by the sellers outside the set, and all buyers outside the set have zero valuations for the goods offered by sellers inside the set. Fairness of the graph game solution boils down to valuation fairness stating that only changing the valuation of one particular buyer for the good offered by a particular seller changes the payoffs of this buyer and seller by the same amount.
Resumo:
We give a new proof of Young's characterization of the Shapley value. Moreover, as applications of the new proof, we show that Young's axiomatization of the Shapley value is valid on various well-known subclasses of TU games.
Resumo:
This paper presents an analysis and discussion, based on cooperative game theory, for the allocation of the cost of losses to generators and demands in transmission systems. We construct a cooperative game theory model in which the players are represented by equivalent bilateral exchanges and we search for a unique loss allocation solution, the Core. Other solution concepts, such as the Shapley Value, the Bilateral Shapley Value and the Kernel are also explored. Our main objective is to illustrate why is not possible to find an optimal solution for allocating the cost of losses to the users of a network. Results and relevant conclusions are presented for a 4-bus system and a 14-bus system. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We propose and analyze a new solution concept, the R solution, for three-person, transferable utility, cooperative games. In the spirit of the Nash Bargaining Solution, our concept is founded on the predicted outcomes of simultaneous, two-party negotiations that would be the alternative to the grand coalition. These possibly probabilistic predictions are based on consistent beliefs. We analyze the properties of the R solution and compare it with the Shapley value and other concepts. The R solution exists and is unique. It belongs to the bargaining set and to the core whenever the latter is not empty. In fact, when the grand coalition can simply execute one of the three possible bilateral trades, the R solution is the most egalitarian selection of the bargaining set. Finally, we discuss how the R solution changes important conclusions of several well known Industrial Organization models.
Resumo:
We reconsider the following cost-sharing problem: agent i = 1,...,n demands a quantity xi of good i; the corresponding total cost C(x1,...,xn) must be shared among the n agents. The Aumann-Shapley prices (p1,...,pn) are given by the Shapley value of the game where each unit of each good is regarded as a distinct player. The Aumann-Shapley cost-sharing method assigns the cost share pixi to agent i. When goods come in indivisible units, we show that this method is characterized by the two standard axioms of Additivity and Dummy, and the property of No Merging or Splitting: agents never find it profitable to split or merge their demands.
Resumo:
We provide new characterization results for the value of games in partition function form. In particular, we use the potential of a game to define the value. We also provide a characterization of the class of values which satisfies one form of reduced game consistency.
Resumo:
In this paper is presented a Game Theory based methodology to allocate transmission costs, considering cooperation and competition between producers. As original contribution, it finds the degree of participation on the additional costs according to the demand behavior. A comparative study was carried out between the obtained results using Nucleolus balance and Shapley Value, with other techniques such as Averages Allocation method and the Generalized Generation Distribution Factors method (GGDF). As example, a six nodes network was used for the simulations. The results demonstrate the ability to find adequate solutions on open access environment to the networks.