12 resultados para BigData
Resumo:
A automação na gestão e análise de dados tem sido um fator crucial para as empresas que necessitam de soluções eficientes em um mundo corporativo cada vez mais competitivo. A explosão do volume de informações, que vem se mantendo crescente nos últimos anos, tem exigido cada vez mais empenho em buscar estratégias para gerenciar e, principalmente, extrair informações estratégicas valiosas a partir do uso de algoritmos de Mineração de Dados, que comumente necessitam realizar buscas exaustivas na base de dados a fim de obter estatísticas que solucionem ou otimizem os parâmetros do modelo de extração do conhecimento utilizado; processo que requer computação intensiva para a execução de cálculos e acesso frequente à base de dados. Dada a eficiência no tratamento de incerteza, Redes Bayesianas têm sido amplamente utilizadas neste processo, entretanto, à medida que o volume de dados (registros e/ou atributos) aumenta, torna-se ainda mais custoso e demorado extrair informações relevantes em uma base de conhecimento. O foco deste trabalho é propor uma nova abordagem para otimização do aprendizado da estrutura da Rede Bayesiana no contexto de BigData, por meio do uso do processo de MapReduce, com vista na melhora do tempo de processamento. Para tanto, foi gerada uma nova metodologia que inclui a criação de uma Base de Dados Intermediária contendo todas as probabilidades necessárias para a realização dos cálculos da estrutura da rede. Por meio das análises apresentadas neste estudo, mostra-se que a combinação da metodologia proposta com o processo de MapReduce é uma boa alternativa para resolver o problema de escalabilidade nas etapas de busca em frequência do algoritmo K2 e, consequentemente, reduzir o tempo de resposta na geração da rede.
Resumo:
En este trabajo se discute cómo los datos sobre los productos producidos en la empresa industrial van a contribuir a transformar el modelo de negocio de ésta mucho más allá del sistema productivo en sí mismo. Para poder adaptarse a esos cambios de paradigma y aumentar la cantidad de valor aportado al consumidor de sus productos será menester que estas compañías den decididos pasos en el ámbito de la Inteligencia de Negocio, lo que significará tener que lidiar con nuevos conceptos provenientes del ámbito de las tecnologías de la información y las comunicaciones, como BIGDATA e IoT (Internet de las cosas).
Resumo:
Com o advento da invenção do modelo relacional em 1970 por E.F.Codd, a forma como a informação era gerida numa base de dados foi totalmente revolucionada. Migrou‐se de sistemas hierárquicos baseados em ficheiros para uma base de dados relacional com tabelas relações e registos que simplificou em muito a gestão da informação e levou muitas empresas a adotarem este modelo. O que E.F.Codd não previu foi o facto de que cada vez mais a informação que uma base de dados teria de armazenar fosse de proporções gigantescas, nem que as solicitações às bases de dados fossem da mesma ordem. Tudo isto veio a acontecer com a difusão da internet que veio ligar todas as pessoas de qualquer parte do mundo que tivessem um computador. Com o número de adesões à internet a crescer, o número de sites que nela eram criados também cresceu (e ainda cresce exponencialmente). Os motores de busca que antigamente indexavam alguns sites por dia, atualmente indexam uns milhões de sites por segundo e, mais recentemente as redes sociais também estão a lidar com quantidades gigantescas de informação. Tanto os motores de busca como as redes sociais chegaram à conclusão que uma base de dados relacional não chega para gerir a enorme quantidade de informação que ambos produzem e como tal, foi necessário encontrar uma solução. Essa solução é NoSQL e é o assunto que esta tese vai tratar. O presente documento visa definir e apresentar o problema que as bases de dados relacionais têm quando lidam com grandes volumes de dados, introduzir os limites do modelo relacional que só até há bem pouco tempo começaram a ser evidenciados com o surgimento de movimentos, como o BigData, com o crescente número de sites que surgem por dia e com o elevado número de utilizadores das redes sociais. Será também ilustrada a solução adotada até ao momento pelos grandes consumidores de dados de elevado volume, como o Google e o Facebook, enunciando as suas características vantagens, desvantagens e os demais conceitos ligados ao modelo NoSQL. A presente tese tenciona ainda demonstrar que o modelo NoSQL é uma realidade usada em algumas empresas e quais as principias mudanças a nível programático e as boas práticas delas resultantes que o modelo NoSQL traz. Por fim esta tese termina com a explicação de que NoSQL é uma forma de implementar a persistência de uma aplicação que se inclui no novo modelo de persistência da informação.
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
JASMIN is a super-data-cluster designed to provide a high-performance high-volume data analysis environment for the UK environmental science community. Thus far JASMIN has been used primarily by the atmospheric science and earth observation communities, both to support their direct scientific workflow, and the curation of data products in the STFC Centre for Environmental Data Archival (CEDA). Initial JASMIN configuration and first experiences are reported here. Useful improvements in scientific workflow are presented. It is clear from the explosive growth in stored data and use that there was a pent up demand for a suitable big-data analysis environment. This demand is not yet satisfied, in part because JASMIN does not yet have enough compute, the storage is fully allocated, and not all software needs are met. Plans to address these constraints are introduced.
Resumo:
Al giorno d'oggi una pratica molto comune è quella di eseguire ricerche su Google per cercare qualsiasi tipo di informazione e molte persone, con problemi di salute, cercano su Google sintomi, consigli medici e possibili rimedi. Questo fatto vale sia per pazienti sporadici che per pazienti cronici: il primo gruppo spesso fa ricerche per rassicurarsi e per cercare informazioni riguardanti i sintomi ed i tempi di guarigione, il secondo gruppo invece cerca nuovi trattamenti e soluzioni. Anche i social networks sono diventati posti di comunicazione medica, dove i pazienti condividono le loro esperienze, ascoltano quelle di altri e si scambiano consigli. Tutte queste ricerche, questo fare domande e scrivere post o altro ha contribuito alla crescita di grandissimi database distribuiti online di informazioni, conosciuti come BigData, che sono molto utili ma anche molto complessi e che necessitano quindi di algoritmi specifici per estrarre e comprendere le variabili di interesse. Per analizzare questo gruppo interessante di pazienti gli sforzi sono stati concentrati in particolare sui pazienti affetti dal morbo di Crohn, che è un tipo di malattia infiammatoria intestinale (IBD) che può colpire qualsiasi parte del tratto gastrointestinale, dalla bocca all'ano, provocando una grande varietà di sintomi. E' stato fatto riferimento a competenze mediche ed informatiche per identificare e studiare ciò che i pazienti con questa malattia provano e scrivono sui social, al fine di comprendere come la loro malattia evolve nel tempo e qual'è il loro umore a riguardo.
Resumo:
E' stata effettuata l'analisi del sistema HIVE su piattaforma Hadoop (installato su un cluster) e sfruttando il benchmark TPC-H ne sono stati valutati i tempi di esecuzione delle query modificando la size del database e il formato di memorizzazione dei file: si è utilizzato il formato standard (AVRO) di tipo sequenziale e il formato PARQUET che memorizza i dati per colonna invece che per riga.
Resumo:
Nella tesi, inizialmente, viene introdotto il concetto di Big Data, descrivendo le caratteristiche principali, il loro utilizzo, la provenienza e le opportunità che possono apportare. Successivamente, si sono spiegati i motivi che hanno portato alla nascita del movimento NoSQL, come la necessità di dover gestire i Big Data pur mantenendo una struttura flessibile nel tempo. Inoltre, dopo un confronto con i sistemi tradizionali, si è passati al classificare questi DBMS in diverse famiglie, accennando ai concetti strutturali sulle quali si basano, per poi spiegare il funzionamento. In seguito è stato descritto il database MongoDB orientato ai documenti. Sono stati approfonditi i dettagli strutturali, i concetti sui quali si basa e gli obbiettivi che si pone, per poi andare ad analizzare nello specifico importanti funzioni, come le operazioni di inserimento e cancellazione, ma anche il modo di interrogare il database. Grazie alla sue caratteristiche che lo rendono molto performante, MonogDB, è stato utilizzato come supporto di base di dati per la realizzazione di un applicazione web che permette di mostrare la mappa della connettività urbana.
Resumo:
Big data è il termine usato per descrivere una raccolta di dati così estesa in termini di volume,velocità e varietà da richiedere tecnologie e metodi analitici specifici per l'estrazione di valori significativi. Molti sistemi sono sempre più costituiti e caratterizzati da enormi moli di dati da gestire,originati da sorgenti altamente eterogenee e con formati altamente differenziati,oltre a qualità dei dati estremamente eterogenei. Un altro requisito in questi sistemi potrebbe essere il fattore temporale: sempre più sistemi hanno bisogno di ricevere dati significativi dai Big Data il prima possibile,e sempre più spesso l’input da gestire è rappresentato da uno stream di informazioni continuo. In questo campo si inseriscono delle soluzioni specifiche per questi casi chiamati Online Stream Processing. L’obiettivo di questa tesi è di proporre un prototipo funzionante che elabori dati di Instant Coupon provenienti da diverse fonti con diversi formati e protocolli di informazioni e trasmissione e che memorizzi i dati elaborati in maniera efficiente per avere delle risposte in tempo reale. Le fonti di informazione possono essere di due tipologie: XMPP e Eddystone. Il sistema una volta ricevute le informazioni in ingresso, estrapola ed elabora codeste fino ad avere dati significativi che possono essere utilizzati da terze parti. Lo storage di questi dati è fatto su Apache Cassandra. Il problema più grosso che si è dovuto risolvere riguarda il fatto che Apache Storm non prevede il ribilanciamento delle risorse in maniera automatica, in questo caso specifico però la distribuzione dei clienti durante la giornata è molto varia e ricca di picchi. Il sistema interno di ribilanciamento sfrutta tecnologie innovative come le metriche e sulla base del throughput e della latenza esecutiva decide se aumentare/diminuire il numero di risorse o semplicemente non fare niente se le statistiche sono all’interno dei valori di soglia voluti.
Resumo:
I Big Data hanno forgiato nuove tecnologie che migliorano la qualità della vita utilizzando la combinazione di rappresentazioni eterogenee di dati in varie discipline. Occorre, quindi, un sistema realtime in grado di computare i dati in tempo reale. Tale sistema viene denominato speed layer, come si evince dal nome si è pensato a garantire che i nuovi dati siano restituiti dalle query funcions con la rapidità in cui essi arrivano. Il lavoro di tesi verte sulla realizzazione di un’architettura che si rifaccia allo Speed Layer della Lambda Architecture e che sia in grado di ricevere dati metereologici pubblicati su una coda MQTT, elaborarli in tempo reale e memorizzarli in un database per renderli disponibili ai Data Scientist. L’ambiente di programmazione utilizzato è JAVA, il progetto è stato installato sulla piattaforma Hortonworks che si basa sul framework Hadoop e sul sistema di computazione Storm, che permette di lavorare con flussi di dati illimitati, effettuando l’elaborazione in tempo reale. A differenza dei tradizionali approcci di stream-processing con reti di code e workers, Storm è fault-tolerance e scalabile. Gli sforzi dedicati al suo sviluppo da parte della Apache Software Foundation, il crescente utilizzo in ambito di produzione di importanti aziende, il supporto da parte delle compagnie di cloud hosting sono segnali che questa tecnologia prenderà sempre più piede come soluzione per la gestione di computazioni distribuite orientate agli eventi. Per poter memorizzare e analizzare queste moli di dati, che da sempre hanno costituito una problematica non superabile con i database tradizionali, è stato utilizzato un database non relazionale: HBase.
Resumo:
Parametro indispensabile di valutazione di un qualsiasi prodotto o servizio, ai giorni nostri, è la web reputation. Sono sempre più numerose le aziende che monitorano la propria "reputazione online". Quest'ultima può esser definita come l'insieme dei messaggi, commenti e feedbacks, positivi, neutri o negativi che siano, di utenti che esprimono la loro opinione tramite il web su un determinato servizio o prodotto rivolto al pubblico. L’applicazione sviluppata, si pone l’obiettivo di analizzare in tempo reale tramite l’utilizzo di Apache Storm, dati provenienti da fonti eterogenee, classificarli tramite KNIME utilizzando tecniche di classificazione quali SVM, alberi decisionali e Naive Bayesian, renderli persistenti mediante l’utilizzo del database NoSQL HBASE e di visualizzarli in tempo reale attraverso dei grafici utilizzando delle servlet, al fine di costituire un valido strumento di supporto per i processi decisionali.
Resumo:
Con l’avvento di Internet, il numero di utenti con un effettivo accesso alla rete e la possibilità di condividere informazioni con tutto il mondo è, negli anni, in continua crescita. Con l’introduzione dei social media, in aggiunta, gli utenti sono portati a trasferire sul web una grande quantità di informazioni personali mettendoli a disposizione delle varie aziende. Inoltre, il mondo dell’Internet Of Things, grazie al quale i sensori e le macchine risultano essere agenti sulla rete, permette di avere, per ogni utente, un numero maggiore di dispositivi, direttamente collegati tra loro e alla rete globale. Proporzionalmente a questi fattori anche la mole di dati che vengono generati e immagazzinati sta aumentando in maniera vertiginosa dando luogo alla nascita di un nuovo concetto: i Big Data. Nasce, di conseguenza, la necessità di far ricorso a nuovi strumenti che possano sfruttare la potenza di calcolo oggi offerta dalle architetture più complesse che comprendono, sotto un unico sistema, un insieme di host utili per l’analisi. A tal merito, una quantità di dati così vasta, routine se si parla di Big Data, aggiunta ad una velocità di trasmissione e trasferimento altrettanto alta, rende la memorizzazione dei dati malagevole, tanto meno se le tecniche di storage risultano essere i tradizionali DBMS. Una soluzione relazionale classica, infatti, permetterebbe di processare dati solo su richiesta, producendo ritardi, significative latenze e inevitabile perdita di frazioni di dataset. Occorre, perciò, far ricorso a nuove tecnologie e strumenti consoni a esigenze diverse dalla classica analisi batch. In particolare, è stato preso in considerazione, come argomento di questa tesi, il Data Stream Processing progettando e prototipando un sistema bastato su Apache Storm scegliendo, come campo di applicazione, la cyber security.