919 resultados para Big Science projects
Resumo:
Progress in microbiology has always been driven by technological advances, ever since Antonie van Leeuwenhoek discovered bacteria by making an improved compound microscope. However, until very recently we have not been able to identify microbes and record their mostly invisible activities, such as nutrient consumption or toxin production on the level of the single cell, not even in the laboratory. This is now changing with the rapid rise of exciting new technologies for single-cell microbiology (1, 2), which enable microbiologists to do what plant and animal ecologists have been doing for a long time: observe who does what, when, where, and next to whom. Single cells taken from the environment can be identified and even their genomes sequenced. Ex situ, their size, elemental, and biochemical composition, as well as other characteristics can be measured with high-throughput and cells sorted accordingly. Even better, individual microbes can be observed in situ with a range of novel microscopic and spectroscopic methods, enabling localization, identification, or functional characterization of cells in a natural sample, combined with detecting uptake of labeled compounds. Alternatively, they can be placed into fabricated microfluidic environments, where they can be positioned, exposed to stimuli, monitored, and their interactions controlled “in microfluido.” By introducing genetically engineered reporter cells into a fabricated landscape or a microcosm taken from nature, their reproductive success or activity can be followed, or their sensing of their local environment recorded.
Resumo:
Mode of access: Internet.
Resumo:
"It could easily provide the back-drop for a James Bond movie. Deep inside a mountain near the North Pole, down a fortified tunnel, and behind airlocked doors in a vault frozen to -18 degrees Celsius, scientists are squirreling away millions of seed samples. The samples constitute the very foundation of agriculture, the biological diversity needed so the world's major food crops can adapt to the next pest or disease, or to climate change. It's little wonder that the Svalbard Global Seed Vault has captured the public's imagination more than almost any agricultural topic in recent years. Popular press reports about the ‘Doomsday Vault,’ however, typically mask the complexity of the endeavor and, if anything, underestimate its practical utility." Cary Fowler This chapter considers the use of seed banks to address concerns about intellectual property, climate change and food security. It has a number of themes. First of all, it is interested in the use of ‘Big Science’ projects to address pressing global scientific concerns and Millennium Development Goals. Second, it highlights the increasing use of banks as a means of managing both property and intellectual property across a wide range of fields of agriculture and biotechnology. Third, it considers the linkage of intellectual property, access to genetic resources and benefit sharing. There are a variety of positions in this debate. Some see requirements in respect of access to genetic resources and benefit sharing as an inconvenient burden for science and commerce. Others defend access to genetic resources and benefit sharing as meaningful and productive. Those inclined to somewhat more conspiratorial views suggest that access to genetic resources and benefit sharing are a ruse to facilitate biopiracy. This chapter has a number of components. Section I focuses upon the Consultative Group on International Agricultural Research (CGIAR) network – often raised as a model for Climate Innovation Centres. Section II considers the Svalbard Global Seed Vault – the so-called Doomsday Vault. After a consideration of the World Summit on Food Security in 2009, it is concluded in this chapter that any future international agreement on climate change needs to address intellectual property, plant genetic resources and food security.
Resumo:
This article considers the debate over patent law, informed consent, and benefit-sharing in the context of biomedical research in respect of Indigenous communities. In particular, it focuses upon three key controversies over large-scale biology projects, involving Indigenous populations. These case studies are representative of the tensions between research organisations, Indigenous communities, and funding agencies. Section two considers the aims and origins of the Human Genome Diversity Project, and criticisms levelled against the venture by Indigenous peak bodies and anti-biotechnology groups, such as the Rural Advancement Foundation International. It examines the ways in which the United Nations Educational, Scientific, and Cultural Organization (UNESCO) grappled with questions of patent law, informed consent, and benefit sharing in relation to population genetics. Section three focuses upon the ongoing litigation in Tilousi v. Arizona State University, and the Havasupai Tribe v. Arizona State University. In this matter, the Havasupai tribe from the Grand Canyon in the United States brought legal action against the Arizona State University and its researchers for using genetic data for unauthorised purposes - namely, genetic research into schizophrenia, migration, and inbreeding. The litigation raises questions about informed consent, negligence, and larger matters of human rights. Section four explores the legal and ethical issues raised by the Genographic Project. It considers the aims and objectives of the venture, and the criticisms levelled against it by Indigenous communities, and anti-biotechnology groups. It examines the response of the United Nations Permanent Forum on Indigenous Issues to the Genographic Project. It charts the debate over the protection of traditional knowledge in various international fora. The conclusion recommends a number of measures to better regulate large-scale biology projects involving the participation of Indigenous communities.
Resumo:
This unique and comprehensive collection investigates the challenges posed to intellectual property by recent paradigm shifts in biology. It explores the legal ramifications of emerging technologies, such as genomics, synthetic biology, stem cell research, nanotechnology, and biodiscovery. Extensive contributions examine recent controversial court decisions in patent law – such as Bilski v. Kappos, and the litigation over Myriad’s patents in respect of BRCA1 and BRCA2 – while other papers explore sui generis fields, such as access to genetic resources, plant breeders' rights, and traditional knowledge. The collection considers the potential and the risks of the new biology for global challenges – such as access to health-care, the protection of the environment and biodiversity, climate change, and food security. It also considers Big Science projects – such as biobanks, the 1000 Genomes Project, and the Doomsday Vault. The inter-disciplinary research brings together the work of scholars from Australia, Canada, Europe, the UK and the US and involves not only legal analysis of case law and policy developments, but also historical, comparative, sociological, and ethical methodologies. Intellectual Property and Emerging Technologies will appeal to policy-makers, legal practitioners, business managers, inventors, scientists and researchers.
Resumo:
A better understanding of vacuum arcs is desirable in many of today's 'big science' projects including linear colliders, fusion devices, and satellite systems. For the Compact Linear Collider (CLIC) design, radio-frequency (RF) breakdowns occurring in accelerating cavities influence efficiency optimisation and cost reduction issues. Studying vacuum arcs both theoretically as well as experimentally under well-defined and reproducible direct-current (DC) conditions is the first step towards exploring RF breakdowns. In this thesis, we have studied Cu DC vacuum arcs with a combination of experiments, a particle-in-cell (PIC) model of the arc plasma, and molecular dynamics (MD) simulations of the subsequent surface damaging mechanism. We have also developed the 2D Arc-PIC code and the physics model incorporated in it, especially for the purpose of modelling the plasma initiation in vacuum arcs. Assuming the presence of a field emitter at the cathode initially, we have identified the conditions for plasma formation and have studied the transitions from field emission stage to a fully developed arc. The 'footing' of the plasma is the cathode spot that supplies the arc continuously with particles; the high-density core of the plasma is located above this cathode spot. Our results have shown that once an arc plasma is initiated, and as long as energy is available, the arc is self-maintaining due to the plasma sheath that ensures enhanced field emission and sputtering. The plasma model can already give an estimate on how the time-to-breakdown changes with the neutral evaporation rate, which is yet to be determined by atomistic simulations. Due to the non-linearity of the problem, we have also performed a code-to-code comparison. The reproducibility of plasma behaviour and time-to-breakdown with independent codes increased confidence in the results presented here. Our MD simulations identified high-flux, high-energy ion bombardment as a possible mechanism forming the early-stage surface damage in vacuum arcs. In this mechanism, sputtering occurs mostly in clusters, as a consequence of overlapping heat spikes. Different-sized experimental and simulated craters were found to be self-similar with a crater depth-to-width ratio of about 0.23 (sim) - 0.26 (exp). Experiments, which we carried out to investigate the energy dependence of DC breakdown properties, point at an intrinsic connection between DC and RF scaling laws and suggest the possibility of accumulative effects influencing the field enhancement factor.
Resumo:
Citizen Science projects are initiatives in which members of the general public participate in scientific research projects and perform or manage research-related tasks such as data collection and/or data annotation. Citizen Science is technologically possible and scientifically significant. However, as the gathered information is from the crowd, the data quality is always hard to manage. There are many ways to manage data quality, and reputation management is one of the common approaches. In recent year, many research teams have deployed many audio or image sensors in natural environment in order to monitor the status of animals or plants. The collected data will be analysed by ecologists. However, as the amount of collected data is exceedingly huge and the number of ecologists is very limited, it is impossible for scientists to manually analyse all these data. The functions of existing automated tools to process the data are still very limited and the results are still not very accurate. Therefore, researchers have turned to recruiting general citizens who are interested in helping scientific research to do the pre-processing tasks such as species tagging. Although research teams can save time and money by recruiting general citizens to volunteer their time and skills to help data analysis, the reliability of contributed data varies a lot. Therefore, this research aims to investigate techniques to enhance the reliability of data contributed by general citizens in scientific research projects especially for acoustic sensing projects. In particular, we aim to investigate how to use reputation management to enhance data reliability. Reputation systems have been used to solve the uncertainty and improve data quality in many marketing and E-Commerce domains. The commercial organizations which have chosen to embrace the reputation management and implement the technology have gained many benefits. Data quality issues are significant to the domain of Citizen Science due to the quantity and diversity of people and devices involved. However, research on reputation management in this area is relatively new. We therefore start our investigation by examining existing reputation systems in different domains. Then we design novel reputation management approaches for Citizen Science projects to categorise participants and data. We have investigated some critical elements which may influence data reliability in Citizen Science projects. These elements include personal information such as location and education and performance information such as the ability to recognise certain bird calls. The designed reputation framework is evaluated by a series of experiments involving many participants for collecting and interpreting data, in particular, environmental acoustic data. Our research in exploring the advantages of reputation management in Citizen Science (or crowdsourcing in general) will help increase awareness among organizations that are unacquainted with its potential benefits.
Resumo:
Citizen Science projects are initiatives in which members of the general public participate in scientific research projects and perform or manage research-related tasks such as data collection and/or data annotation. Citizen Science is technologically possible and scientifically significant. However, although research teams can save time and money by recruiting general citizens to volunteer their time and skills to help data analysis, the reliability of contributed data varies a lot. Data reliability issues are significant to the domain of Citizen Science due to the quantity and diversity of people and devices involved. Participants may submit low quality, misleading, inaccurate, or even malicious data. Therefore, finding a way to improve the data reliability has become an urgent demand. This study aims to investigate techniques to enhance the reliability of data contributed by general citizens in scientific research projects especially for acoustic sensing projects. In particular, we propose to design a reputation framework to enhance data reliability and also investigate some critical elements that should be aware of during developing and designing new reputation systems.
Resumo:
This paper investigates engaging experienced birders, as volunteer citizen scientists, to analyze large recorded audio datasets gathered through environmental acoustic monitoring. Although audio data is straightforward to gather, automated analysis remains a challenging task; the existing expertise, local knowledge and motivation of the birder community can complement computational approaches and provide distinct benefits. We explored both the culture and practice of birders, and paradigms for interacting with recorded audio data. A variety of candidate design elements were tested with birders. This study contributes an understanding of how virtual interactions and practices can be developed to complement existing practices of experienced birders in the physical world. In so doing this study contributes a new approach to engagement in e-science. Whereas most citizen science projects task lay participants with discrete real world or artificial activities, sometimes using extrinsic motivators, this approach builds on existing intrinsically satisfying practices.
Resumo:
Citizen science projects have demonstrated the advantages of people with limited relevant prior knowledge participating in research. However, there is a difference between engaging the general public in a scientific project and entering an established expert community to conduct research. This paper describes our ongoing acoustic biodiversity monitoring collaborations with the bird watching community. We report on findings gathered over six years from participation in bird walks, observing conservation efforts, and records of personal activities of experienced birders. We offer an empirical study into extending existing protocols through in-context collaborative design involving scientists and domain experts.
Resumo:
Mitigating the environmental effects of global population growth, climatic change and increasing socio-ecological complexity is a daunting challenge. To tackle this requires synthesis: the integration of disparate information to generate novel insights from heterogeneous, complex situations where there are diverse perspectives. Since 1995, a structured approach to inter-, multi- and trans-disciplinary1 collaboration around big science questions has been supported through synthesis centres around the world. These centres are finding an expanding role due to ever-accumulating data and the need for more and better opportunities to develop transdisciplinary and holistic approaches to solve real-world problems. The Australian Centre for Ecological Analysis and Synthesis (ACEAS
Resumo:
The amateur birding community has a long and proud tradition of contributing to bird surveys and bird atlases. Coordinated activities such as Breeding Bird Atlases and the Christmas Bird Count are examples of "citizen science" projects. With the advent of technology, Web 2.0 sites such as eBird have been developed to facilitate online sharing of data and thus increase the potential for real-time monitoring. However, as recently articulated in an editorial in this journal and elsewhere, monitoring is best served when based on a priori hypotheses. Harnessing citizen scientists to collect data following a hypothetico-deductive approach carries challenges. Moreover, the use of citizen science in scientific and monitoring studies has raised issues of data accuracy and quality. These issues are compounded when data collection moves into the Web 2.0 world. An examination of the literature from social geography on the concept of "citizen sensors" and volunteered geographic information (VGI) yields thoughtful reflections on the challenges of data quality/data accuracy when applying information from citizen sensors to research and management questions. VGI has been harnessed in a number of contexts, including for environmental and ecological monitoring activities. Here, I argue that conceptualizing a monitoring project as an experiment following the scientific method can further contribute to the use of VGI. I show how principles of experimental design can be applied to monitoring projects to better control for data quality of VGI. This includes suggestions for how citizen sensors can be harnessed to address issues of experimental controls and how to design monitoring projects to increase randomization and replication of sampled data, hence increasing scientific reliability and statistical power.
Resumo:
Biodiversity citizen science projects are growing in number, size, and scope, and are gaining recognition as valuable data sources that build public engagement. Yet publication rates indicate that citizen science is still infrequently used as a primary tool for conservation research and the causes of this apparent disconnect have not been quantitatively evaluated. To uncover the barriers to the use of citizen science as a research tool, we surveyed professional biodiversity scientists (n = 423) and citizen science project managers (n = 125). We conducted three analyses using non-parametric recursive modeling (random forest), using questions that addressed: scientists' perceptions and preferences regarding citizen science, scientists' requirements for their own data, and the actual practices of citizen science projects. For all three analyses we identified the most important factors that influence the probability of publication using citizen science data. Four general barriers emerged: a narrow awareness among scientists of citizen science projects that match their needs; the fact that not all biodiversity science is well-suited for citizen science; inconsistency in data quality across citizen science projects; and bias among scientists for certain data sources (institutions and ages/education levels of data collectors). Notably, we find limited evidence to suggest a relationship between citizen science projects that satisfy scientists' biases and data quality or probability of publication. These results illuminate the need for greater visibility of citizen science practices with respect to the requirements of biodiversity science and show that addressing bias among scientists could improve application of citizen science in conservation.
Resumo:
Race as a biological category has a long and troubling history as a central ordering concept in the life and human sciences. The mid-twentieth century has been marked as the point where biological concepts of race began to disappear from science. However, biological definitions of race continue to penetrate scientific understandings and uses of racial concepts. Using the theoretical frameworks of critical race theory and science and technology studies and an in-depth case study of the discipline of immunology, this dissertation explores the appearance of a mid-century decline of concepts of biological race in science. I argue that biological concepts of race did not disappear in the middle of the twentieth century but were reconfigured into genetic language. In this dissertation I offer a periodization of biological concepts of race. Focusing on continuities and the effects of contingent events, I compare how biological concepts of race articulate with racisms in each period. The discipline of immunology serves as a case study that demonstrates how biological concepts of race did not decline in the postwar era, but were translated into the language of genetics and populations. I argue that the appearance of a decline was due to events both internal and external to the science of immunology. By framing the mid-twentieth century disappearance of race in science as the triumph of an antiracist racial project of science, it allows us to more clearly see the more recent resurgence of race in science as a recycling of older themes and tactics from the racist science projects of the past.
Resumo:
Cette recherche explore comment l’infrastructure et les utilisations d’eBird, l’un des plus grands projets de science citoyenne dans le monde, se développent et évoluent dans le temps et l’espace. Nous nous concentrerons sur le travail d’eBird avec deux de ses partenaires latino-américains, le Mexique et le Pérou, chacun avec un portail Web géré par des organisations locales. eBird, qui est maintenant un grand réseau mondial de partenariats, donne occasion aux citoyens du monde entier la possibilité de contribuer à la science et à la conservation d’oiseaux à partir de ses observations téléchargées en ligne. Ces observations sont gérées et gardées dans une base de données qui est unifiée, globale et accessible pour tous ceux qui s’intéressent au sujet des oiseaux et sa conservation. De même, les utilisateurs profitent des fonctionnalités de la plateforme pour organiser et visualiser leurs données et celles d’autres. L’étude est basée sur une méthodologie qualitative à partir de l’observation des plateformes Web et des entrevues semi-structurées avec les membres du Laboratoire d’ornithologie de Cornell, l’équipe eBird et les membres des organisations partenaires locales responsables d’eBird Pérou et eBird Mexique. Nous analysons eBird comme une infrastructure qui prend en considération les aspects sociaux et techniques dans son ensemble, comme un tout. Nous explorons aussi à la variété de différents types d’utilisation de la plateforme et de ses données par ses divers utilisateurs. Trois grandes thématiques ressortent : l’importance de la collaboration comme une philosophie qui sous-tend le développement d’eBird, l’élargissement des relations et connexions d’eBird à travers ses partenariats, ainsi que l’augmentation de la participation et le volume des données. Finalement, au fil du temps on a vu une évolution des données et de ses différentes utilisations, et ce qu’eBird représente comme infrastructure.