999 resultados para Bifurcation effects
Resumo:
In the present paper, we solve a twist symplectic map for the action of an ergodic magnetic limiter in a large aspect-ratio tokamak. In this model, we study the bifurcation scenarios that occur in the remnants regular islands that co-exist with chaotic magnetic surfaces. The onset of atypical local bifurcations created by secondary shearless tori are identified through numerical profiles of internal rotation number and we observe that their rupture can reduce the usual magnetic field line escape at the tokamak plasma edge.
Resumo:
We report in this paper the effect of temperature on the oscillatory electro-oxidation of methanol on polycrystalline platinum in aqueous sulfuric acid media. Potential oscillations were studied under galvanostatic control and at four temperatures ranging from 5 to 35 degrees C. For a given temperature, the departure from thermodynamic equilibrium does not affect the oscillation period and results in a slight increase of the oscillation amplitude. Apparent activation energies were also evaluated in voltammetric and chronoamperometric experiments and were compared to those obtained under oscillatory conditions. In any case, the apparent activation energies values fell into the region between 50 and 70 kJ mol(-1). Specifically under oscillatory conditions an apparent activation energy of 60 +/- 3 kJ mol(-1) and a temperature coefficient q(10) of about 2.3 were observed. The present findings extend our recently published report (J. Phys. Chem. A, 2008, 112, 4617) on the temperature effect on the oscillatory electro-oxidation of formic acid. We found that, despite the fact that both studies were carried out under similar conditions, unlike the case of formic acid, only conventional, Arrhenius, dynamics was observed for methanol.
Resumo:
In this paper we define and investigate generalized Richards' growth models with strong and weak Allee effects and no Allee effect. We prove the transition from strong Allee effect to no Allee effect, passing through the weak Allee effect, depending on the implicit conditions, which involve the several parameters considered in the models. New classes of functions describing the existence or not of Allee effect are introduced, a new dynamical approach to Richards' populational growth equation is established. These families of generalized Richards' functions are proportional to the right hand side of the generalized Richards' growth models proposed. Subclasses of strong and weak Allee functions and functions with no Allee effect are characterized. The study of their bifurcation structure is presented in detail, this analysis is done based on the configurations of bifurcation curves and symbolic dynamics techniques. Generically, the dynamics of these functions are classified in the following types: extinction, semi-stability, stability, period doubling, chaos, chaotic semistability and essential extinction. We obtain conditions on the parameter plane for the existence of a weak Allee effect region related to the appearance of cusp points. To support our results, we present fold and flip bifurcations curves and numerical simulations of several bifurcation diagrams.
Resumo:
Density-dependent effects, both positive or negative, can have an important impact on the population dynamics of species by modifying their population per-capita growth rates. An important type of such density-dependent factors is given by the so-called Allee effects, widely studied in theoretical and field population biology. In this study, we analyze two discrete single population models with overcompensating density-dependence and Allee effects due to predator saturation and mating limitation using symbolic dynamics theory. We focus on the scenarios of persistence and bistability, in which the species dynamics can be chaotic. For the chaotic regimes, we compute the topological entropy as well as the Lyapunov exponent under ecological key parameters and different initial conditions. We also provide co-dimension two bifurcation diagrams for both systems computing the periods of the orbits, also characterizing the period-ordering routes toward the boundary crisis responsible for species extinction via transient chaos. Our results show that the topological entropy increases as we approach to the parametric regions involving transient chaos, being maximum when the full shift R(L)(infinity) occurs, and the system enters into the essential extinction regime. Finally, we characterize analytically, using a complex variable approach, and numerically the inverse square-root scaling law arising in the vicinity of a saddle-node bifurcation responsible for the extinction scenario in the two studied models. The results are discussed in the context of species fragility under differential Allee effects. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We develop a new a coinfection model for hepatitis C virus (HCV) and the human immunodeficiency virus (HIV). We consider treatment for both diseases, screening, unawareness and awareness of HIV infection, and the use of condoms. We study the local stability of the disease-free equilibria for the full model and for the two submodels (HCV only and HIV only submodels). We sketch bifurcation diagrams for different parameters, such as the probabilities that a contact will result in a HIV or an HCV infection. We present numerical simulations of the full model where the HIV, HCV and double endemic equilibria can be observed. We also show numerically the qualitative changes of the dynamical behavior of the full model for variation of relevant parameters. We extrapolate the results from the model for actual measures that could be implemented in order to reduce the number of infected individuals.
Resumo:
Membrane reactor, reactive membrane separation, arrheotrope, azeotrope, dusty gas model, esterification, residue curve map, distillation, kinetics, singular point, bifurcation
Resumo:
Abstract Background: Configuration of the abdominal aorta is related to healthy aging and a variety of disorders. Objectives: We aimed to assess heritable and environmental effects on the abdominal aortic diameter. Methods: 114 adult (69 monozygotic, 45 same-sex dizygotic) twin pairs (mean age 43.6 ± 16.3 years) underwent abdominal ultrasound with Esaote MyLab 70X ultrasound machine to visualize the abdominal aorta below the level of the origin of the renal arteries and 1-3 cm above the bifurcation. Results: Age- and sex-adjusted heritability of the abdominal aortic diameter below the level of the origin of the renal arteries was 40% [95% confidence interval (CI), 14 to 67%] and 55% above the aortic bifurcation (95% CI, 45 to 70%). None of the aortic diameters showed common environmental effects, but unshared environmental effects were responsible for 60% and 45% of the traits, respectively. Conclusions: Our analysis documents the moderate heritability and its segment-specific difference of the abdominal aortic diameter. The moderate part of variance was explained by unshared environmental components, emphasizing the importance of lifestyle factors in primary prevention. Further studies in this field may guide future gene-mapping efforts and investigate specific lifestyle factors to prevent abdominal aortic dilatation and its complications.
Resumo:
River bifurcations are key nodes within braided river systems controlling the flow and sediment partitioning and therefore the dynamics of the river braiding process. Recent research has shown that certain geometrical configurations induce instabilities that lead to downstream mid-channel bar formation and the formation of bifurcations. However, we currently have a poor understanding of the flow division process within bifurcations and the flow dynamics in the downstream bifurcates, both of which are needed to understand bifurcation stability. This paper presents results of a numerical sensitivity experiment undertaken using computational fluid dynamics (CFD) with the purpose of understanding the flow dynamics of a series of idealized bifurcations. A geometric sensitivity analysis is undertaken for a range of channel slopes (0.005 to 0.03), bifurcation angles (22 degrees to 42 degrees) and a restricted set of inflow conditions based upon simulating flow through meander bends with different curvature on the flow field dynamics through the bifurcation. The results demonstrate that the overall slope of the bifurcation affects the velocity of flow through the bifurcation and when slope asymmetry is introduced, the flow structures in the bifurcation are modified. In terms of bifurcation evolution the most important observation appears to be that once slope asymmetry is greater than 0.2 the flow within the steep bifurcate shows potential instability and the potential for alternate channel bar formation. Bifurcation angle also defines the flow structures within the bifurcation with an increase in bifurcation angle increasing the flow velocity down both bifurcates. However, redistributive effects of secondary circulation caused by upstream curvature can very easily counter the effects of local bifurcation characteristics. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Aircraft systems are highly nonlinear and time varying. High-performance aircraft at high angles of incidence experience undesired coupling of the lateral and longitudinal variables, resulting in departure from normal controlled � ight. The construction of a robust closed-loop control that extends the stable and decoupled � ight envelope as far as possible is pursued. For the study of these systems, nonlinear analysis methods are needed. Previously, bifurcation techniques have been used mainly to analyze open-loop nonlinear aircraft models and to investigate control effects on dynamic behavior. Linear feedback control designs constructed by eigenstructure assignment methods at a � xed � ight condition are investigated for a simple nonlinear aircraft model. Bifurcation analysis, in conjunction with linear control design methods, is shown to aid control law design for the nonlinear system.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Considering the different potential benefits of divergent fiber ingredients, the effect of 3 fiber sources on energy and macronutrient digestibility, fermentation product formation, postprandial metabolite responses, and colon histology of overweight cats (Felis catus) fed kibble diets was compared. Twenty-four healthy adult cats were assigned in a complete randomized block design to 2 groups of 12 animals, and 3 animals from each group were fed 1 of 4 of the following kibble diets: control (CO; 11.5% dietary fiber), beet pulp (BP; 26% dietary fiber), wheat bran (WB; 24% dietary fiber), and sugarcane fiber (SF; 28% dietary fiber). Digestibility was measured by the total collection of feces. After 16 d of diet adaptation and an overnight period without food, blood glucose, cholesterol, and triglyceride postprandial responses were evaluated for 16 h after continued exposure to food. on d 20, colon biopsies of the cats were collected under general anesthesia. Fiber addition reduced food energy and nutrient digestibility. of all the fiber sources, SF had the least dietary fiber digestibility (P < 0.05), causing the largest reduction of dietary energy digestibility (P < 0.05). The greater fermentability of BP resulted in reduced fecal DM and pH, greater fecal production [g/(cat x d); as-is], and greater fecal concentration of acetate, propionate, and lactate (P < 0.05). For most fecal variables, WB was intermediate between BP and SF, and SF was similar to the control diet except for an increased fecal DM and firmer feces production for the SF diet (P < 0.05). Postprandial evaluations indicated reduced mean glucose concentration and area under the glucose curve in cats fed the SF diet (P < 0.05). Colon mucosa thickness, crypt area, lamina propria area, goblet cell area, crypt mean size, and crypt in bifurcation did not vary among the diets. According to the fiber solubility and fermentation rates, fiber sources can induce different physiological responses in cats, reduce energy digestibility, and favor glucose metabolism (SF), or improve gut health (BP).
Local attractors, degeneracy and analyticity: Symmetry effects on the locally coupled Kuramoto model
Resumo:
In this work we study the local coupled Kuramoto model with periodic boundary conditions. Our main objective is to show how analytical solutions may be obtained from symmetry assumptions, and while we proceed on our endeavor we show apart from the existence of local attractors, some unexpected features resulting from the symmetry properties, such as intermittent and chaotic period phase slips, degeneracy of stable solutions and double bifurcation composition. As a result of our analysis, we show that stable fixed points in the synchronized region may be obtained with just a small amount of the existent solutions, and for a class of natural frequencies configuration we show analytical expressions for the critical synchronization coupling as a function of the number of oscillators, both exact and asymptotic. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Considering the different potential benefits of divergent fiber ingredients, the effect of 3 fiber sources on energy and macronutrient digestibility, fermentation product formation, postprandial metabolite responses, and colon histology of overweight cats (Felis catus) fed kibble diets was compared. Twenty-four healthy adult cats were assigned in a complete randomized block design to 2 groups of 12 animals, and 3 animals from each group were fed 1 of 4 of the following kibble diets: control (CO; 11.5% dietary fiber), beet pulp (BP; 26% dietary fiber), wheat bran (WB; 24% dietary fiber), and sugarcane fiber (SF; 28% dietary fiber). Digestibility was measured by the total collection of feces. After 16 d of diet adaptation and an overnight period without food, blood glucose, cholesterol, and triglyceride postprandial responses were evaluated for 16 h after continued exposure to food. On d 20, colon biopsies of the cats were collected under general anesthesia. Fiber addition reduced food energy and nutrient digestibility. Of all the fiber sources, SF had the least dietary fiber digestibility (P < 0.05), causing the largest reduction of dietary energy digestibility (P < 0.05). The greater fermentability of BP resulted in reduced fecal DM and pH, greater fecal production [g/(cat x d); as-is], and greater fecal concentration of acetate, propionate, and lactate (P < 0.05). For most fecal variables, WB was intermediate between BP and SF, and SF was similar to the control diet except for an increased fecal DM and firmer feces production for the SF diet (P < 0.05). Postprandial evaluations indicated reduced mean glucose concentration and area under the glucose curve in cats fed the SF diet (P < 0.05). Colon mucosa thickness, crypt area, lamina propria area, goblet cell area, crypt mean size, and crypt in bifurcation did not vary among the diets. According to the fiber solubility and fermentation rates, fiber sources can induce different physiological responses in cats, reduce energy digestibility, and favor glucose metabolism (SF), or improve gut health (BP).
Resumo:
Analytical and numerical analyses of the nonlinear response of a three-degree-of-freedom nonlinear aeroelastic system are performed. Particularly, the effects of concentrated structural nonlinearities on the different motions are determined. The concentrated nonlinearities are introduced in the pitch, plunge, and flap springs by adding cubic stiffness in each of them. Quasi-steady approximation and the Duhamel formulation are used to model the aerodynamic loads. Using the quasi-steady approach, we derive the normal form of the Hopf bifurcation associated with the system's instability. Using the nonlinear form, three configurations including supercritical and subcritical aeroelastic systems are defined and analyzed numerically. The characteristics of these different configurations in terms of stability and motions are evaluated. The usefulness of the two aerodynamic formulations in the prediction of the different motions beyond the bifurcation is discussed.
Resumo:
In order to achieve a better understanding of multiple infections and long latency in the dynamics of Mycobacterium tuberculosis infection, we analyze a simple model. Since backward bifurcation is well documented in the literature with respect to the model we are considering, our aim is to illustrate this behavior in terms of the range of variations of the model's parameters. We show that backward bifurcation disappears (and forward bifurcation occurs) if: (a) the latent period is shortened below a critical value; and (b) the rates of super-infection and re-infection are decreased. This result shows that among immunosuppressed individuals, super-infection and/or changes in the latent period could act to facilitate the onset of tuberculosis. When we decrease the incubation period below the critical value, we obtain the curve of the incidence of tuberculosis following forward bifurcation; however, this curve envelops that obtained from the backward bifurcation diagram.